Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385371300> ?p ?o ?g. }
- W4385371300 endingPage "585" @default.
- W4385371300 startingPage "571" @default.
- W4385371300 abstract "Centella asiatica consists of centellosides that impart medicinal properties to the plant. Diverse geographical regions lead to variation in centelloside content due to the influence of environment and soil conditions. Therefore it is imperative to analyze C. asiatica from different geographical regions for influence of various environmental factors on the yield of centellosides. Considering these factors, the current work attempted to conduct chemotyping of C. asiatica to find out an elite genotype, design an artificial neural network (ANN) model to optimize and predict the drug yield in C. asiatica from various regions. High Performance Liquid Chromatography (HPLC) was used to analyze the centelloside content in the C. asiatica samples collected from 70 different geographical locations of eastern and north eastern states of India. The elite germplasms were selected based on the higher percentage (>8%) of centellosides (sum of major biomarkers i.e, asiaticoside, madecassoside, asiatic acid, and madecassic acid). HPLC analysis showed a significant variation in the centelloside contents that ranged from 0.37% to 10.91%. Hence, 3 germplasm accessions CA-18 (10.91%), CA-37 (9.60%), and CA-38 (9.04%) were selected as elite germplasms on the basis of their drug yielding potential. To develop the ANN model, the soil and climatic data of all the C. asiatica samples collected from 70 accessions were used. Based on its correlation coefficient, MLP (R2=0.94) was superior to RBF (R2=0.87), as it predicted the centelloside content very precisely. Additionally, the sensitivity analysis showed that soil nitrogen, phosphorus, and maximum temperature were the most influential factors that affected centelloside content. The developed ANN model was tested to forecast the centelloside content of a new site and the prediction efficiency was found to be 94.63%. Therefore, the developed ANN model seems to be a promising approach and could be of great importance in predicting locations for optimizing centelloside content in C. asiatica." @default.
- W4385371300 created "2023-07-29" @default.
- W4385371300 creator A5003256033 @default.
- W4385371300 creator A5019501856 @default.
- W4385371300 creator A5021097394 @default.
- W4385371300 creator A5026768626 @default.
- W4385371300 creator A5042064788 @default.
- W4385371300 creator A5044978620 @default.
- W4385371300 creator A5070295488 @default.
- W4385371300 date "2023-09-01" @default.
- W4385371300 modified "2023-10-01" @default.
- W4385371300 title "Artificial neural network based prediction and optimization of centelloside content in Centella asiatica: A comparison between multilayer perceptron (MLP) and radial basis function (RBF) algorithms for soil and climatic parameter" @default.
- W4385371300 cites W1967987821 @default.
- W4385371300 cites W1976595577 @default.
- W4385371300 cites W1994296310 @default.
- W4385371300 cites W2002620848 @default.
- W4385371300 cites W2004742220 @default.
- W4385371300 cites W2019666039 @default.
- W4385371300 cites W2037248352 @default.
- W4385371300 cites W2041370578 @default.
- W4385371300 cites W2041630148 @default.
- W4385371300 cites W2044842717 @default.
- W4385371300 cites W2050434881 @default.
- W4385371300 cites W2051827697 @default.
- W4385371300 cites W2064719622 @default.
- W4385371300 cites W2066886841 @default.
- W4385371300 cites W2067362040 @default.
- W4385371300 cites W2086744270 @default.
- W4385371300 cites W2099656668 @default.
- W4385371300 cites W2124211842 @default.
- W4385371300 cites W2129942927 @default.
- W4385371300 cites W2145883044 @default.
- W4385371300 cites W2148574664 @default.
- W4385371300 cites W2153571739 @default.
- W4385371300 cites W2162774880 @default.
- W4385371300 cites W2164090829 @default.
- W4385371300 cites W2339528123 @default.
- W4385371300 cites W2344045346 @default.
- W4385371300 cites W2474124643 @default.
- W4385371300 cites W2522993943 @default.
- W4385371300 cites W2580653411 @default.
- W4385371300 cites W2590363704 @default.
- W4385371300 cites W2735868225 @default.
- W4385371300 cites W2751125342 @default.
- W4385371300 cites W2782343430 @default.
- W4385371300 cites W2789325840 @default.
- W4385371300 cites W2790453971 @default.
- W4385371300 cites W2793811319 @default.
- W4385371300 cites W2902702130 @default.
- W4385371300 cites W2992001876 @default.
- W4385371300 cites W3005447933 @default.
- W4385371300 cites W3123429085 @default.
- W4385371300 cites W3127670633 @default.
- W4385371300 cites W3136454724 @default.
- W4385371300 cites W3175870276 @default.
- W4385371300 cites W4200155180 @default.
- W4385371300 cites W4200549606 @default.
- W4385371300 cites W4214884141 @default.
- W4385371300 cites W4224581302 @default.
- W4385371300 cites W4245290151 @default.
- W4385371300 cites W4296655557 @default.
- W4385371300 cites W4312258798 @default.
- W4385371300 doi "https://doi.org/10.1016/j.sajb.2023.07.019" @default.
- W4385371300 hasPublicationYear "2023" @default.
- W4385371300 type Work @default.
- W4385371300 citedByCount "1" @default.
- W4385371300 countsByYear W43853713002023 @default.
- W4385371300 crossrefType "journal-article" @default.
- W4385371300 hasAuthorship W4385371300A5003256033 @default.
- W4385371300 hasAuthorship W4385371300A5019501856 @default.
- W4385371300 hasAuthorship W4385371300A5021097394 @default.
- W4385371300 hasAuthorship W4385371300A5026768626 @default.
- W4385371300 hasAuthorship W4385371300A5042064788 @default.
- W4385371300 hasAuthorship W4385371300A5044978620 @default.
- W4385371300 hasAuthorship W4385371300A5070295488 @default.
- W4385371300 hasConcept C105795698 @default.
- W4385371300 hasConcept C144027150 @default.
- W4385371300 hasConcept C154945302 @default.
- W4385371300 hasConcept C179717631 @default.
- W4385371300 hasConcept C2777461220 @default.
- W4385371300 hasConcept C2779077069 @default.
- W4385371300 hasConcept C2780092901 @default.
- W4385371300 hasConcept C33923547 @default.
- W4385371300 hasConcept C41008148 @default.
- W4385371300 hasConcept C50644808 @default.
- W4385371300 hasConcept C86803240 @default.
- W4385371300 hasConceptScore W4385371300C105795698 @default.
- W4385371300 hasConceptScore W4385371300C144027150 @default.
- W4385371300 hasConceptScore W4385371300C154945302 @default.
- W4385371300 hasConceptScore W4385371300C179717631 @default.
- W4385371300 hasConceptScore W4385371300C2777461220 @default.
- W4385371300 hasConceptScore W4385371300C2779077069 @default.
- W4385371300 hasConceptScore W4385371300C2780092901 @default.
- W4385371300 hasConceptScore W4385371300C33923547 @default.
- W4385371300 hasConceptScore W4385371300C41008148 @default.
- W4385371300 hasConceptScore W4385371300C50644808 @default.
- W4385371300 hasConceptScore W4385371300C86803240 @default.
- W4385371300 hasLocation W43853713001 @default.