Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385373406> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4385373406 endingPage "115463" @default.
- W4385373406 startingPage "115463" @default.
- W4385373406 abstract "In this paper, a machine learning method based on Deep Neural Network (DNN) is used to establish a predictive model for flow-induced vibration (FIV) power output, and the power database is constructed based on this model. The results reveal that the power database can quickly and efficiently obtain power values for any parameter combination, significantly improving the efficiency of studying the power response of flow-induced vibration. Its accurate prediction ability, low cost and time consumption have made the database a useful tool. Furthermore, the power database can provide power values for various parameter combinations to comprehensively analyze the impact of system parameter combinations on power. The screening results indicate that the optimal power output for the single oscillator flow-induced vibration energy harvesting is 22.71W and the optimal power for the dual oscillator FIV energy harvesting is 36.38W. A power database of single and dual oscillators flow-induced vibration harness energy provides a novel method for the study of flow-induced vibration power generation." @default.
- W4385373406 created "2023-07-29" @default.
- W4385373406 creator A5004770224 @default.
- W4385373406 creator A5075104676 @default.
- W4385373406 creator A5081239726 @default.
- W4385373406 date "2023-10-01" @default.
- W4385373406 modified "2023-09-23" @default.
- W4385373406 title "Establishment of a flow-induced vibration power database based on deep neural network machine learning method" @default.
- W4385373406 cites W1498436455 @default.
- W4385373406 cites W1985817625 @default.
- W4385373406 cites W2100495367 @default.
- W4385373406 cites W2186586645 @default.
- W4385373406 cites W2514532885 @default.
- W4385373406 cites W2740086686 @default.
- W4385373406 cites W2784224506 @default.
- W4385373406 cites W2793537932 @default.
- W4385373406 cites W2887647587 @default.
- W4385373406 cites W2911405284 @default.
- W4385373406 cites W2919115771 @default.
- W4385373406 cites W2972111593 @default.
- W4385373406 cites W2998428682 @default.
- W4385373406 cites W3088227148 @default.
- W4385373406 cites W3129832736 @default.
- W4385373406 cites W3155739706 @default.
- W4385373406 cites W3158566877 @default.
- W4385373406 cites W3164779837 @default.
- W4385373406 cites W3172576596 @default.
- W4385373406 cites W3181017485 @default.
- W4385373406 cites W3189369478 @default.
- W4385373406 cites W3202344095 @default.
- W4385373406 cites W4200284604 @default.
- W4385373406 cites W4214632878 @default.
- W4385373406 cites W4281636973 @default.
- W4385373406 cites W4283464435 @default.
- W4385373406 cites W4366764230 @default.
- W4385373406 doi "https://doi.org/10.1016/j.oceaneng.2023.115463" @default.
- W4385373406 hasPublicationYear "2023" @default.
- W4385373406 type Work @default.
- W4385373406 citedByCount "0" @default.
- W4385373406 crossrefType "journal-article" @default.
- W4385373406 hasAuthorship W4385373406A5004770224 @default.
- W4385373406 hasAuthorship W4385373406A5075104676 @default.
- W4385373406 hasAuthorship W4385373406A5081239726 @default.
- W4385373406 hasConcept C101518730 @default.
- W4385373406 hasConcept C105795698 @default.
- W4385373406 hasConcept C121332964 @default.
- W4385373406 hasConcept C154945302 @default.
- W4385373406 hasConcept C163258240 @default.
- W4385373406 hasConcept C186370098 @default.
- W4385373406 hasConcept C198394728 @default.
- W4385373406 hasConcept C206815995 @default.
- W4385373406 hasConcept C24890656 @default.
- W4385373406 hasConcept C2775924081 @default.
- W4385373406 hasConcept C2986056383 @default.
- W4385373406 hasConcept C33923547 @default.
- W4385373406 hasConcept C41008148 @default.
- W4385373406 hasConcept C423512 @default.
- W4385373406 hasConcept C47446073 @default.
- W4385373406 hasConcept C50644808 @default.
- W4385373406 hasConcept C62520636 @default.
- W4385373406 hasConcept C89227174 @default.
- W4385373406 hasConceptScore W4385373406C101518730 @default.
- W4385373406 hasConceptScore W4385373406C105795698 @default.
- W4385373406 hasConceptScore W4385373406C121332964 @default.
- W4385373406 hasConceptScore W4385373406C154945302 @default.
- W4385373406 hasConceptScore W4385373406C163258240 @default.
- W4385373406 hasConceptScore W4385373406C186370098 @default.
- W4385373406 hasConceptScore W4385373406C198394728 @default.
- W4385373406 hasConceptScore W4385373406C206815995 @default.
- W4385373406 hasConceptScore W4385373406C24890656 @default.
- W4385373406 hasConceptScore W4385373406C2775924081 @default.
- W4385373406 hasConceptScore W4385373406C2986056383 @default.
- W4385373406 hasConceptScore W4385373406C33923547 @default.
- W4385373406 hasConceptScore W4385373406C41008148 @default.
- W4385373406 hasConceptScore W4385373406C423512 @default.
- W4385373406 hasConceptScore W4385373406C47446073 @default.
- W4385373406 hasConceptScore W4385373406C50644808 @default.
- W4385373406 hasConceptScore W4385373406C62520636 @default.
- W4385373406 hasConceptScore W4385373406C89227174 @default.
- W4385373406 hasLocation W43853734061 @default.
- W4385373406 hasOpenAccess W4385373406 @default.
- W4385373406 hasPrimaryLocation W43853734061 @default.
- W4385373406 hasRelatedWork W1847389634 @default.
- W4385373406 hasRelatedWork W2056236939 @default.
- W4385373406 hasRelatedWork W2089806297 @default.
- W4385373406 hasRelatedWork W2367478242 @default.
- W4385373406 hasRelatedWork W2799861385 @default.
- W4385373406 hasRelatedWork W2883213055 @default.
- W4385373406 hasRelatedWork W3003491824 @default.
- W4385373406 hasRelatedWork W3005769749 @default.
- W4385373406 hasRelatedWork W3006544674 @default.
- W4385373406 hasRelatedWork W384658861 @default.
- W4385373406 hasVolume "285" @default.
- W4385373406 isParatext "false" @default.
- W4385373406 isRetracted "false" @default.
- W4385373406 workType "article" @default.