Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385374214> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4385374214 abstract "Gravity currents in oceanic flows require simultaneous measurements of pressure and velocity to assess energy flux, which is crucial for predicting fluid circulation, mixing, and overall energy budget. In this paper, we apply Physics Informed Neural Networks (PINNs) to infer velocity and pressure field from Light Attenuation Technique (LAT) measurements for gravity current induced by lock-exchange. In a PINN model, physical laws are embedded in the loss function of a neural network, such that the model fits the training data but is also constrained to reduce the residuals of the governing equations. PINNs are able to solve ill-posed inverse problems training on sparse and noisy data, and therefore can be applied to real engineering applications. The noise robustness of PINNs and the model parameters are investigated in a 2 dimensions toy case on a lock-exchange configuration , employing synthetic data. Then we train a PINN with experimental LAT measurements and quantitatively compare the velocity fields inferred to PIV measurements performed simultaneously on the same experiment. Finally, we study the energy flux field $J=p boldsymbol{u}$ derived from the model. The results state that accurate and useful quantities can be derived from a PINN model trained on real experimental data which is encouraging for a better description of gravity currents and improve models of ocean circulation." @default.
- W4385374214 created "2023-07-29" @default.
- W4385374214 creator A5005708377 @default.
- W4385374214 creator A5023487889 @default.
- W4385374214 creator A5030704908 @default.
- W4385374214 creator A5039865670 @default.
- W4385374214 creator A5052613666 @default.
- W4385374214 creator A5079167545 @default.
- W4385374214 date "2023-07-27" @default.
- W4385374214 modified "2023-09-27" @default.
- W4385374214 title "Enhancing Gravity Currents Analysis through Physics-Informed Neural Networks: Insights from Experimental Observations" @default.
- W4385374214 doi "https://doi.org/10.48550/arxiv.2307.14794" @default.
- W4385374214 hasPublicationYear "2023" @default.
- W4385374214 type Work @default.
- W4385374214 citedByCount "0" @default.
- W4385374214 crossrefType "posted-content" @default.
- W4385374214 hasAuthorship W4385374214A5005708377 @default.
- W4385374214 hasAuthorship W4385374214A5023487889 @default.
- W4385374214 hasAuthorship W4385374214A5030704908 @default.
- W4385374214 hasAuthorship W4385374214A5039865670 @default.
- W4385374214 hasAuthorship W4385374214A5052613666 @default.
- W4385374214 hasAuthorship W4385374214A5079167545 @default.
- W4385374214 hasBestOaLocation W43853742141 @default.
- W4385374214 hasConcept C104317684 @default.
- W4385374214 hasConcept C11413529 @default.
- W4385374214 hasConcept C121332964 @default.
- W4385374214 hasConcept C121864883 @default.
- W4385374214 hasConcept C154945302 @default.
- W4385374214 hasConcept C185592680 @default.
- W4385374214 hasConcept C41008148 @default.
- W4385374214 hasConcept C50644808 @default.
- W4385374214 hasConcept C55493867 @default.
- W4385374214 hasConcept C57879066 @default.
- W4385374214 hasConcept C63479239 @default.
- W4385374214 hasConcept C74650414 @default.
- W4385374214 hasConceptScore W4385374214C104317684 @default.
- W4385374214 hasConceptScore W4385374214C11413529 @default.
- W4385374214 hasConceptScore W4385374214C121332964 @default.
- W4385374214 hasConceptScore W4385374214C121864883 @default.
- W4385374214 hasConceptScore W4385374214C154945302 @default.
- W4385374214 hasConceptScore W4385374214C185592680 @default.
- W4385374214 hasConceptScore W4385374214C41008148 @default.
- W4385374214 hasConceptScore W4385374214C50644808 @default.
- W4385374214 hasConceptScore W4385374214C55493867 @default.
- W4385374214 hasConceptScore W4385374214C57879066 @default.
- W4385374214 hasConceptScore W4385374214C63479239 @default.
- W4385374214 hasConceptScore W4385374214C74650414 @default.
- W4385374214 hasLocation W43853742141 @default.
- W4385374214 hasOpenAccess W4385374214 @default.
- W4385374214 hasPrimaryLocation W43853742141 @default.
- W4385374214 hasRelatedWork W2122478253 @default.
- W4385374214 hasRelatedWork W2141907153 @default.
- W4385374214 hasRelatedWork W2165848777 @default.
- W4385374214 hasRelatedWork W2366435870 @default.
- W4385374214 hasRelatedWork W2380313759 @default.
- W4385374214 hasRelatedWork W2382945436 @default.
- W4385374214 hasRelatedWork W2386387936 @default.
- W4385374214 hasRelatedWork W2386767533 @default.
- W4385374214 hasRelatedWork W2392110728 @default.
- W4385374214 hasRelatedWork W2962182036 @default.
- W4385374214 isParatext "false" @default.
- W4385374214 isRetracted "false" @default.
- W4385374214 workType "article" @default.