Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385376918> ?p ?o ?g. }
- W4385376918 abstract "Abstract The worst-case discharge during a blowout is a major concern for the oil and gas industry. Various two-phase flow patterns are established in the wellbore during a blowout incident. One of the challenges for field engineers is accurately predicting the flow pattern and, subsequently, the pressure drop along the wellbore to successfully control the well. Existing machine learning models rely on instantaneous pressure drop and liquid hold-up measurements that are not readily available in the field. This study aims to develop a novel machine-learning model to predict two-phase flow patterns in the wellbore for a wide range of inclination angles (0 − 90 degrees) and superficial gas velocities. The model also helps identify the most crucial wellbore parameter that affects the flow pattern of a two-phase flow. This study collected nearly 5000 data points with various flow pattern observations as a data bank for model formulation. The input data includes pipe diameter, gas velocity, liquid velocity, inclination angle, liquid viscosity and density, and visualized/observed flow patterns. As a first step, the observed flow patterns from different sources are displayed in well-established flow regime maps for vertical and horizontal pipes. The data set was graphically plotted in the form of a scatter matrix, followed by statistical analysis to eliminate outliers. A number of machine learning algorithms are considered to develop an accurate model. These include Support Vector Machine (SVM), Multi-layer Perceptron (MLP), Gradient Boosting algorithm, CatBoost, and Extra Tree algorithm, and the Random Forest algorithm. The predictive abilities of the models are cross compared. Because of their unique features, such as variable-importance plots, the CatBoost, Extra Tree, and Random Forest algorithms are selected and implemented in the model to determine the most crucial wellbore parameters affecting the two-phase flow pattern. The Variable-importance plot feature makes CatBoost, Extra Tree, and Random Forest the best option for investigating two-phase flow characteristics using machine learning techniques. The result showed that the CatBoost model predictions demonstrate 98% accuracy compared to measurements. Furthermore, its forecast suggests that in-situ superficial gas velocity is the most influential variable affecting flow pattern, followed by superficial liquid velocity, inclination angle, pipe diameter, and liquid viscosity. These findings could not be possible with the commonly used empirical correlations. For instance, according to previous phenomenological models, the impact of the inclination angle on the flow pattern variation is negligible at high in-situ superficial gas velocities, which contradicts the current observation. The new model requires readily available field operating parameters to predict flow patterns in the wellbore accurately. A precise forecast of flow patterns leads to accurate pressure loss calculations and worst-case discharge predictions." @default.
- W4385376918 created "2023-07-30" @default.
- W4385376918 creator A5020644012 @default.
- W4385376918 creator A5025468527 @default.
- W4385376918 creator A5031947420 @default.
- W4385376918 creator A5070955124 @default.
- W4385376918 creator A5077164827 @default.
- W4385376918 creator A5088420990 @default.
- W4385376918 creator A5092565843 @default.
- W4385376918 date "2023-07-30" @default.
- W4385376918 modified "2023-09-27" @default.
- W4385376918 title "Modeling Two-Phase Flow in Vertical and Deviated Wellbores Using Machine Learning Method" @default.
- W4385376918 cites W1170214759 @default.
- W4385376918 cites W1964380706 @default.
- W4385376918 cites W1968959292 @default.
- W4385376918 cites W1978541339 @default.
- W4385376918 cites W1980506155 @default.
- W4385376918 cites W1982619498 @default.
- W4385376918 cites W1994950399 @default.
- W4385376918 cites W1996959890 @default.
- W4385376918 cites W2010258271 @default.
- W4385376918 cites W2022238671 @default.
- W4385376918 cites W2024972524 @default.
- W4385376918 cites W2027906420 @default.
- W4385376918 cites W2029050723 @default.
- W4385376918 cites W2034218744 @default.
- W4385376918 cites W2035302935 @default.
- W4385376918 cites W2037998432 @default.
- W4385376918 cites W2044762986 @default.
- W4385376918 cites W2047540791 @default.
- W4385376918 cites W2048805639 @default.
- W4385376918 cites W2054784093 @default.
- W4385376918 cites W2059612093 @default.
- W4385376918 cites W2066361230 @default.
- W4385376918 cites W2071075719 @default.
- W4385376918 cites W2073852785 @default.
- W4385376918 cites W2078991924 @default.
- W4385376918 cites W2083038992 @default.
- W4385376918 cites W2090811425 @default.
- W4385376918 cites W2100537585 @default.
- W4385376918 cites W2472739243 @default.
- W4385376918 cites W2533014913 @default.
- W4385376918 cites W2557558822 @default.
- W4385376918 cites W2618358297 @default.
- W4385376918 cites W2742401376 @default.
- W4385376918 cites W2789289184 @default.
- W4385376918 cites W2967002257 @default.
- W4385376918 cites W2968339161 @default.
- W4385376918 cites W3016285114 @default.
- W4385376918 cites W3049349475 @default.
- W4385376918 cites W3085899632 @default.
- W4385376918 cites W3091413509 @default.
- W4385376918 cites W3104611735 @default.
- W4385376918 cites W3118727999 @default.
- W4385376918 cites W3216625121 @default.
- W4385376918 cites W4214490774 @default.
- W4385376918 cites W4289942048 @default.
- W4385376918 cites W4313646899 @default.
- W4385376918 doi "https://doi.org/10.2118/217116-ms" @default.
- W4385376918 hasPublicationYear "2023" @default.
- W4385376918 type Work @default.
- W4385376918 citedByCount "0" @default.
- W4385376918 crossrefType "proceedings-article" @default.
- W4385376918 hasAuthorship W4385376918A5020644012 @default.
- W4385376918 hasAuthorship W4385376918A5025468527 @default.
- W4385376918 hasAuthorship W4385376918A5031947420 @default.
- W4385376918 hasAuthorship W4385376918A5070955124 @default.
- W4385376918 hasAuthorship W4385376918A5077164827 @default.
- W4385376918 hasAuthorship W4385376918A5088420990 @default.
- W4385376918 hasAuthorship W4385376918A5092565843 @default.
- W4385376918 hasConcept C114088122 @default.
- W4385376918 hasConcept C11413529 @default.
- W4385376918 hasConcept C119857082 @default.
- W4385376918 hasConcept C121332964 @default.
- W4385376918 hasConcept C12267149 @default.
- W4385376918 hasConcept C127413603 @default.
- W4385376918 hasConcept C141813653 @default.
- W4385376918 hasConcept C144308804 @default.
- W4385376918 hasConcept C152068911 @default.
- W4385376918 hasConcept C154945302 @default.
- W4385376918 hasConcept C21080849 @default.
- W4385376918 hasConcept C25197100 @default.
- W4385376918 hasConcept C2524010 @default.
- W4385376918 hasConcept C33923547 @default.
- W4385376918 hasConcept C38349280 @default.
- W4385376918 hasConcept C41008148 @default.
- W4385376918 hasConcept C44154836 @default.
- W4385376918 hasConcept C50644808 @default.
- W4385376918 hasConcept C57879066 @default.
- W4385376918 hasConcept C60908668 @default.
- W4385376918 hasConcept C78519656 @default.
- W4385376918 hasConceptScore W4385376918C114088122 @default.
- W4385376918 hasConceptScore W4385376918C11413529 @default.
- W4385376918 hasConceptScore W4385376918C119857082 @default.
- W4385376918 hasConceptScore W4385376918C121332964 @default.
- W4385376918 hasConceptScore W4385376918C12267149 @default.
- W4385376918 hasConceptScore W4385376918C127413603 @default.
- W4385376918 hasConceptScore W4385376918C141813653 @default.
- W4385376918 hasConceptScore W4385376918C144308804 @default.
- W4385376918 hasConceptScore W4385376918C152068911 @default.