Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385382497> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4385382497 abstract "Abstract Thermal conductivity of rocks defined as the ability of rocks to transmit heat, can indicate the potential for geothermal resource in a given location. While direct laboratory core sample analysis and indirect analysis leveraging empirical correlations from electric logs are used to determine thermal conductivity of rocks, they are usually expensive, time consuming and difficult to implement. Hence, in this study, several machine learning methods specifically Gradient Boosting Regressor, Random Forest, K-nearest neighbour, ensemble method (voting regressor), and Artificial Neural Networks were developed for the real-time prediction of thermal conductivity of rocks in geothermal wells. Data being obtained from Utah Forge field project included drilling data, thermal conductivity data and other necessary information from the field. With real-time sensor drilling data such as Rate of penetration (ROP), surface RPM, Flow in, Weight on bit (WOB), and Pump pressure, as input parameters and matrix thermal conductivity (MTC) as output, the models were developed. The results obtained from this study, showed excellent performances for majority of the models. However, it was observed that the ensemble voting regressor, which combined the top three models was able to predict thermal conductivity with above 89% and 80% R2 scores on the train and validation datasets respectively. Thus, this research work describes the feasibility of leveraging several machine learning methods in estimating thermal conductivity of rocks which is cost effective, and practically achievable." @default.
- W4385382497 created "2023-07-30" @default.
- W4385382497 creator A5016842226 @default.
- W4385382497 creator A5038621989 @default.
- W4385382497 creator A5045163259 @default.
- W4385382497 creator A5092566936 @default.
- W4385382497 creator A5092566937 @default.
- W4385382497 date "2023-07-30" @default.
- W4385382497 modified "2023-09-27" @default.
- W4385382497 title "Prediction of Thermal Conductivity of Rocks in Geothermal Field Using Machine Learning Methods: a Comparative Approach" @default.
- W4385382497 cites W1808258884 @default.
- W4385382497 cites W1972731318 @default.
- W4385382497 cites W2008201071 @default.
- W4385382497 cites W2230238747 @default.
- W4385382497 cites W2927872289 @default.
- W4385382497 cites W3022745296 @default.
- W4385382497 cites W3122626956 @default.
- W4385382497 cites W3184607363 @default.
- W4385382497 cites W4205773987 @default.
- W4385382497 cites W4220817410 @default.
- W4385382497 cites W4289101112 @default.
- W4385382497 doi "https://doi.org/10.2118/217217-ms" @default.
- W4385382497 hasPublicationYear "2023" @default.
- W4385382497 type Work @default.
- W4385382497 citedByCount "0" @default.
- W4385382497 crossrefType "proceedings-article" @default.
- W4385382497 hasAuthorship W4385382497A5016842226 @default.
- W4385382497 hasAuthorship W4385382497A5038621989 @default.
- W4385382497 hasAuthorship W4385382497A5045163259 @default.
- W4385382497 hasAuthorship W4385382497A5092566936 @default.
- W4385382497 hasAuthorship W4385382497A5092566937 @default.
- W4385382497 hasConcept C111766609 @default.
- W4385382497 hasConcept C11413529 @default.
- W4385382497 hasConcept C119857082 @default.
- W4385382497 hasConcept C12267149 @default.
- W4385382497 hasConcept C124101348 @default.
- W4385382497 hasConcept C127313418 @default.
- W4385382497 hasConcept C127413603 @default.
- W4385382497 hasConcept C154945302 @default.
- W4385382497 hasConcept C159985019 @default.
- W4385382497 hasConcept C192562407 @default.
- W4385382497 hasConcept C25197100 @default.
- W4385382497 hasConcept C41008148 @default.
- W4385382497 hasConcept C50644808 @default.
- W4385382497 hasConcept C78519656 @default.
- W4385382497 hasConcept C8058405 @default.
- W4385382497 hasConcept C97346530 @default.
- W4385382497 hasConceptScore W4385382497C111766609 @default.
- W4385382497 hasConceptScore W4385382497C11413529 @default.
- W4385382497 hasConceptScore W4385382497C119857082 @default.
- W4385382497 hasConceptScore W4385382497C12267149 @default.
- W4385382497 hasConceptScore W4385382497C124101348 @default.
- W4385382497 hasConceptScore W4385382497C127313418 @default.
- W4385382497 hasConceptScore W4385382497C127413603 @default.
- W4385382497 hasConceptScore W4385382497C154945302 @default.
- W4385382497 hasConceptScore W4385382497C159985019 @default.
- W4385382497 hasConceptScore W4385382497C192562407 @default.
- W4385382497 hasConceptScore W4385382497C25197100 @default.
- W4385382497 hasConceptScore W4385382497C41008148 @default.
- W4385382497 hasConceptScore W4385382497C50644808 @default.
- W4385382497 hasConceptScore W4385382497C78519656 @default.
- W4385382497 hasConceptScore W4385382497C8058405 @default.
- W4385382497 hasConceptScore W4385382497C97346530 @default.
- W4385382497 hasLocation W43853824971 @default.
- W4385382497 hasOpenAccess W4385382497 @default.
- W4385382497 hasPrimaryLocation W43853824971 @default.
- W4385382497 hasRelatedWork W1996541855 @default.
- W4385382497 hasRelatedWork W2114879407 @default.
- W4385382497 hasRelatedWork W2355927362 @default.
- W4385382497 hasRelatedWork W2623442315 @default.
- W4385382497 hasRelatedWork W2961085424 @default.
- W4385382497 hasRelatedWork W3002466114 @default.
- W4385382497 hasRelatedWork W3195168932 @default.
- W4385382497 hasRelatedWork W4306674287 @default.
- W4385382497 hasRelatedWork W4316658362 @default.
- W4385382497 hasRelatedWork W4383373628 @default.
- W4385382497 isParatext "false" @default.
- W4385382497 isRetracted "false" @default.
- W4385382497 workType "article" @default.