Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385383089> ?p ?o ?g. }
- W4385383089 endingPage "126071" @default.
- W4385383089 startingPage "126071" @default.
- W4385383089 abstract "Recent increase in the integration of nanotechnology and nanosciences to the biomedical sector fetches the human wellness through the development of sustainable treatment methodologies for cancerous tumors at all stages of their initiation and progression. This involves the development of multifunctional theranostic probes that effectively support for the early cancer diagnosis, avoiding non-target cell toxicity, controlled and customized anticancer drug release etc. Therefore, to advance the field of nanotechnology-based sustainable cancer treatment, we fabricated and tested the efficacy of anticancer drug-loaded magnetic hybrid nanoparticles (NPs) towards in vitro cell culture systems. The developed conjugate of NPs was incorporated with the functions of both controlled drug delivery and heat-releasing ability using Mn3O4 (manganese oxide) magnetic core with Cu shell encapsulated within trimethyl chitosan (TMC) biopolymer. On characterization, the Cu@Mn3O4-TMC NPs were confirmed to have an approximate size of 130 nm with full agglomeration (as observed by the HRTEM) and crystal size of 92.95 ± 18.38 nm with tetragonal hausmannite phase for Mn3O4 spinel structure (XRD). Also, the UV–Vis and FTIR analysis provided the qualitative and quantitative effects of 5-fluororacil (5-Fu) anticancer drug loading (max 68 %) onto the Cu@Mn3O4-TMC NPs. The DLS analysis indicated for the occurrence of no significant changes to the particle size (around 100 nm) of Cu@Mn3O4-TMC due to the solution dispersion thereby confirming for the aqueous stability of developed NPs. In addition, the magnetization values of Cu@Mn3O4-TMC NPs were measured to be 34 emu/g and a blocking temperature of 42 K. Further tests of magnetic hyperthermia by the Cu@Mn3O4-TMC/5-Fu NPs provided that the heat-releasing capacity (% ΔT at 15 min) increases with that of increased frequency, i.e. 28 % (440 Hz) > 22.6 % (240 Hz) > 18 % (44 Hz), and the highest specific power loss (SPL) value observed to be 488 W/g for water. Moreover, the 5-Fu drug release studies indicate that the release is high at a pH of 5.2 and almost all the loaded drug is getting delivered under the influence of the external magnetic field (430 Hz) due to the influence of both Brownian-rotation and Néel relaxation heat-mediated mechanism. The pharmacokinetic drug release studies have suggested for the occurrence of more than one model, i.e. First-order, Higuchi (diffusion), and Korsemeyer–Peppas (non-Fickian), in addition to hyperthermia. Finally, the in vitro cell culture systems (MCF-7 cancer and MCF-10 non-cancer) helped to differentiate the physiological changes due to the effects of hyperthermia and 5-Fu drug individually and as a combination of both. The observed differences of cell viability losses among both cell types are measured and discussed with the expression of heat shock proteins (HSPs) by the MCF-10 cells as against the MCF-7 cancer cells. We believe that the results generated in this project can be helpful for the designing of new cancer therapeutic models with nominal adverse effects on healthy normal cells and thus paving a way for the treatment of cancer and other deadly diseases in a sustainable manner." @default.
- W4385383089 created "2023-07-30" @default.
- W4385383089 creator A5004407869 @default.
- W4385383089 creator A5010986844 @default.
- W4385383089 creator A5013600309 @default.
- W4385383089 creator A5026583282 @default.
- W4385383089 creator A5049700413 @default.
- W4385383089 creator A5050887515 @default.
- W4385383089 creator A5073751680 @default.
- W4385383089 creator A5081435268 @default.
- W4385383089 creator A5090980851 @default.
- W4385383089 creator A5091466613 @default.
- W4385383089 date "2023-09-01" @default.
- W4385383089 modified "2023-10-17" @default.
- W4385383089 title "Magnetically controlled drug delivery and hyperthermia effects of core-shell Cu@Mn3O4 nanoparticles towards cancer cells in vitro" @default.
- W4385383089 cites W1924929041 @default.
- W4385383089 cites W1964669190 @default.
- W4385383089 cites W1968634330 @default.
- W4385383089 cites W1969479165 @default.
- W4385383089 cites W1972223844 @default.
- W4385383089 cites W1979659149 @default.
- W4385383089 cites W1981031202 @default.
- W4385383089 cites W1981792173 @default.
- W4385383089 cites W1983080439 @default.
- W4385383089 cites W1992294089 @default.
- W4385383089 cites W2029744416 @default.
- W4385383089 cites W2031285004 @default.
- W4385383089 cites W2051450866 @default.
- W4385383089 cites W2057823834 @default.
- W4385383089 cites W2059457655 @default.
- W4385383089 cites W2067052556 @default.
- W4385383089 cites W2084751239 @default.
- W4385383089 cites W2085359041 @default.
- W4385383089 cites W2092265250 @default.
- W4385383089 cites W2094614028 @default.
- W4385383089 cites W2109707685 @default.
- W4385383089 cites W2135284562 @default.
- W4385383089 cites W2137329054 @default.
- W4385383089 cites W2143874541 @default.
- W4385383089 cites W2161561469 @default.
- W4385383089 cites W2291205197 @default.
- W4385383089 cites W2328852331 @default.
- W4385383089 cites W2460219608 @default.
- W4385383089 cites W2517342676 @default.
- W4385383089 cites W2519141587 @default.
- W4385383089 cites W2587081414 @default.
- W4385383089 cites W2599894411 @default.
- W4385383089 cites W2600110911 @default.
- W4385383089 cites W2619179139 @default.
- W4385383089 cites W2744068575 @default.
- W4385383089 cites W2754334732 @default.
- W4385383089 cites W2754371433 @default.
- W4385383089 cites W2883477868 @default.
- W4385383089 cites W2884738544 @default.
- W4385383089 cites W2885056805 @default.
- W4385383089 cites W2895102833 @default.
- W4385383089 cites W2896882920 @default.
- W4385383089 cites W2898105459 @default.
- W4385383089 cites W2899009117 @default.
- W4385383089 cites W2900520270 @default.
- W4385383089 cites W2910231763 @default.
- W4385383089 cites W2947249053 @default.
- W4385383089 cites W2980500211 @default.
- W4385383089 cites W3001462071 @default.
- W4385383089 cites W3002209835 @default.
- W4385383089 cites W3010628223 @default.
- W4385383089 cites W3017215961 @default.
- W4385383089 cites W3032329009 @default.
- W4385383089 cites W3032805600 @default.
- W4385383089 cites W3048893185 @default.
- W4385383089 cites W3069398226 @default.
- W4385383089 cites W3082271977 @default.
- W4385383089 cites W3091978717 @default.
- W4385383089 cites W3133526903 @default.
- W4385383089 cites W3167319716 @default.
- W4385383089 cites W3188229594 @default.
- W4385383089 cites W3196761205 @default.
- W4385383089 cites W4226069641 @default.
- W4385383089 cites W4229527561 @default.
- W4385383089 cites W4309722654 @default.
- W4385383089 cites W4320489217 @default.
- W4385383089 cites W4214492069 @default.
- W4385383089 doi "https://doi.org/10.1016/j.ijbiomac.2023.126071" @default.
- W4385383089 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37524291" @default.
- W4385383089 hasPublicationYear "2023" @default.
- W4385383089 type Work @default.
- W4385383089 citedByCount "0" @default.
- W4385383089 crossrefType "journal-article" @default.
- W4385383089 hasAuthorship W4385383089A5004407869 @default.
- W4385383089 hasAuthorship W4385383089A5010986844 @default.
- W4385383089 hasAuthorship W4385383089A5013600309 @default.
- W4385383089 hasAuthorship W4385383089A5026583282 @default.
- W4385383089 hasAuthorship W4385383089A5049700413 @default.
- W4385383089 hasAuthorship W4385383089A5050887515 @default.
- W4385383089 hasAuthorship W4385383089A5073751680 @default.
- W4385383089 hasAuthorship W4385383089A5081435268 @default.
- W4385383089 hasAuthorship W4385383089A5090980851 @default.
- W4385383089 hasAuthorship W4385383089A5091466613 @default.