Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385383119> ?p ?o ?g. }
- W4385383119 endingPage "107287" @default.
- W4385383119 startingPage "107287" @default.
- W4385383119 abstract "Hemodynamic parameters are of great significance in the clinical diagnosis and treatment of cardiovascular diseases. However, noninvasive, real-time and accurate acquisition of hemodynamics remains a challenge for current invasive detection and simulation algorithms. Here, we integrate computational fluid dynamics with our customized analysis framework based on a multi-attribute point cloud dataset and physics-informed neural networks (PINNs)-aided deep learning modules. This combination is implemented by our workflow that generates flow field datasets within two types of patient personalized models - aorta with fine coronary branches and abdominal aorta. Deep learning modules with or without an antecedent hierarchical structure model the flow field development and complete the mapping from spatial and temporal dimensions to 4D hemodynamics. 88,000 cases on 4 randomized partitions in 16 controlled trials reveal the hemodynamic landscape of spatio-temporal anisotropy within two types of personalized models, which demonstrates the effectiveness of PINN in predicting the space-time behavior of flow fields and gives the optimal deep learning framework for different blood vessels in terms of balancing the training cost and accuracy dimensions. The proposed framework shows intentional performance in computational cost, accuracy and visualization compared to currently prevalent methods, and has the potential for generalization to model flow fields and corresponding clinical metrics within vessels at different locations. We expect our framework to push the 4D hemodynamic predictions to the real-time level, and in statistically significant fashion, applicable to morphologically variable vessels." @default.
- W4385383119 created "2023-07-30" @default.
- W4385383119 creator A5005633954 @default.
- W4385383119 creator A5015124086 @default.
- W4385383119 creator A5016186688 @default.
- W4385383119 creator A5017510225 @default.
- W4385383119 creator A5040726164 @default.
- W4385383119 creator A5050382601 @default.
- W4385383119 creator A5051866628 @default.
- W4385383119 creator A5070599380 @default.
- W4385383119 creator A5070961291 @default.
- W4385383119 creator A5077156702 @default.
- W4385383119 creator A5090519794 @default.
- W4385383119 date "2023-09-01" @default.
- W4385383119 modified "2023-09-27" @default.
- W4385383119 title "Physics-informed neural networks (PINNs) for 4D hemodynamics prediction: An investigation of optimal framework based on vascular morphology" @default.
- W4385383119 cites W1809285270 @default.
- W4385383119 cites W1908859542 @default.
- W4385383119 cites W2005569745 @default.
- W4385383119 cites W2070592191 @default.
- W4385383119 cites W2085954149 @default.
- W4385383119 cites W2089494470 @default.
- W4385383119 cites W2096227551 @default.
- W4385383119 cites W2142345742 @default.
- W4385383119 cites W2146132623 @default.
- W4385383119 cites W2322480977 @default.
- W4385383119 cites W2335916523 @default.
- W4385383119 cites W2515505748 @default.
- W4385383119 cites W2751025926 @default.
- W4385383119 cites W2757894858 @default.
- W4385383119 cites W2781918771 @default.
- W4385383119 cites W2785071288 @default.
- W4385383119 cites W2793681419 @default.
- W4385383119 cites W2888560511 @default.
- W4385383119 cites W2913732334 @default.
- W4385383119 cites W2955208145 @default.
- W4385383119 cites W2963776465 @default.
- W4385383119 cites W2965353672 @default.
- W4385383119 cites W2981132954 @default.
- W4385383119 cites W2985777871 @default.
- W4385383119 cites W2998557912 @default.
- W4385383119 cites W3011803449 @default.
- W4385383119 cites W3021518412 @default.
- W4385383119 cites W3023042104 @default.
- W4385383119 cites W3024077573 @default.
- W4385383119 cites W3028603705 @default.
- W4385383119 cites W3082239830 @default.
- W4385383119 cites W3091859806 @default.
- W4385383119 cites W3124254264 @default.
- W4385383119 cites W3137474564 @default.
- W4385383119 cites W3163993681 @default.
- W4385383119 cites W3175108636 @default.
- W4385383119 cites W3194478644 @default.
- W4385383119 cites W3198440554 @default.
- W4385383119 cites W3199200087 @default.
- W4385383119 cites W3216565981 @default.
- W4385383119 cites W4206161472 @default.
- W4385383119 cites W4220717841 @default.
- W4385383119 cites W4223460168 @default.
- W4385383119 cites W4224221843 @default.
- W4385383119 cites W4225248705 @default.
- W4385383119 cites W4225716327 @default.
- W4385383119 cites W4225776951 @default.
- W4385383119 cites W4231303025 @default.
- W4385383119 cites W4281560562 @default.
- W4385383119 cites W4288039037 @default.
- W4385383119 cites W4289295504 @default.
- W4385383119 cites W4306160174 @default.
- W4385383119 cites W4315432687 @default.
- W4385383119 cites W4315487120 @default.
- W4385383119 cites W4317353193 @default.
- W4385383119 cites W4318485411 @default.
- W4385383119 doi "https://doi.org/10.1016/j.compbiomed.2023.107287" @default.
- W4385383119 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37536096" @default.
- W4385383119 hasPublicationYear "2023" @default.
- W4385383119 type Work @default.
- W4385383119 citedByCount "0" @default.
- W4385383119 crossrefType "journal-article" @default.
- W4385383119 hasAuthorship W4385383119A5005633954 @default.
- W4385383119 hasAuthorship W4385383119A5015124086 @default.
- W4385383119 hasAuthorship W4385383119A5016186688 @default.
- W4385383119 hasAuthorship W4385383119A5017510225 @default.
- W4385383119 hasAuthorship W4385383119A5040726164 @default.
- W4385383119 hasAuthorship W4385383119A5050382601 @default.
- W4385383119 hasAuthorship W4385383119A5051866628 @default.
- W4385383119 hasAuthorship W4385383119A5070599380 @default.
- W4385383119 hasAuthorship W4385383119A5070961291 @default.
- W4385383119 hasAuthorship W4385383119A5077156702 @default.
- W4385383119 hasAuthorship W4385383119A5090519794 @default.
- W4385383119 hasConcept C108583219 @default.
- W4385383119 hasConcept C119857082 @default.
- W4385383119 hasConcept C124101348 @default.
- W4385383119 hasConcept C154945302 @default.
- W4385383119 hasConcept C164705383 @default.
- W4385383119 hasConcept C178853913 @default.
- W4385383119 hasConcept C41008148 @default.
- W4385383119 hasConcept C71924100 @default.
- W4385383119 hasConceptScore W4385383119C108583219 @default.