Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385385429> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4385385429 endingPage "49" @default.
- W4385385429 startingPage "40" @default.
- W4385385429 abstract "Traffic violation has been a big challenge to mankind as many of the accidents recorded over years is as a result of traffic violation. The traffic violation monitoring systems deployed in developing countries lack adequate authentication of road users, no efficient and effective profiling system of offenders and offences, as such, traffic agents cannot generate instant traffic history of an offender. The monitoring of traffic offenders in developing countries has a lot of challenges including; lack of proper authentication of vehicles and users, lack of substantive traffic system that suits the management of traffic offenders’ profile in both rural and urban areas, lack of predictable modules to forecast the tendency of an offender to cause accident in the future, poor means of communication between traffic agencies and vehicle users, poor traffic offence awareness for vehicle users and lack of a dependable traffic offenders profile database. The area of traffic offender identification using fingerprint and NIN and predicting the possibility of the traffic offender committing more traffic offence in the nearest future has not be researched on and this forms the research gap this paper is set to cover. Therefore, this thesis is providing a solution by development of a deep learning model for profiling and predicting traffic offender’sfocuses on developing a traffic offenders profiling and prediction system using deep learning algorithm to predict the likelihood of an offence to be committed by a road user.The proposed system developed a model that will profile traffic offenders in both urban and rural settings, create a traffic offender’s database that will interact with existing national databases to authenticate traffic offenders, provides a module that will predict the likelihood of a road user to commit severe traffic blunder in the future and provide intelligent information necessary for timely action by law enforcement agencies. The system also createdan SMS based traffic awareness module that handles traffic offences communication between traffic agents and offenders. These designs are implemented using a websystem developed with PHP, MySQL and JavaScript. The System Design followed the OODM methodology for componentization of the system modules giving room for coupling, decoupling, modification, encapsulation and reuse, as well as easy maintainability. Unified Modeling Language was extensively used to simplify the explanation of the system modules. The software performance was tested using accuracy of traffic offender prediction and Confusion Matrix was adopted for the thesis. For the purpose of this thesis, dataset was collected from data-world (https:// data. world/ health data ny/qutr-irdf) and the data is an excel sheet dataset for Traffic offenders. The result obtained from the new system developed shows 95% accuracy of the deep learning technique for predict the likelihood of a road user to commit traffic blunder in the future." @default.
- W4385385429 created "2023-07-30" @default.
- W4385385429 creator A5004138622 @default.
- W4385385429 creator A5014121091 @default.
- W4385385429 creator A5092567652 @default.
- W4385385429 creator A5092567653 @default.
- W4385385429 date "2023-01-01" @default.
- W4385385429 modified "2023-10-16" @default.
- W4385385429 title "DEVELOPMENT OF A DEEP LEARNING MODEL FOR PROFILING AND PREDICTING TRAFFIC OFFENDERS" @default.
- W4385385429 doi "https://doi.org/10.33564/ijeast.2023.v07i09.007" @default.
- W4385385429 hasPublicationYear "2023" @default.
- W4385385429 type Work @default.
- W4385385429 citedByCount "0" @default.
- W4385385429 crossrefType "journal-article" @default.
- W4385385429 hasAuthorship W4385385429A5004138622 @default.
- W4385385429 hasAuthorship W4385385429A5014121091 @default.
- W4385385429 hasAuthorship W4385385429A5092567652 @default.
- W4385385429 hasAuthorship W4385385429A5092567653 @default.
- W4385385429 hasBestOaLocation W43853854291 @default.
- W4385385429 hasConcept C111919701 @default.
- W4385385429 hasConcept C127413603 @default.
- W4385385429 hasConcept C154945302 @default.
- W4385385429 hasConcept C17744445 @default.
- W4385385429 hasConcept C187191949 @default.
- W4385385429 hasConcept C199539241 @default.
- W4385385429 hasConcept C22212356 @default.
- W4385385429 hasConcept C2776034591 @default.
- W4385385429 hasConcept C33724603 @default.
- W4385385429 hasConcept C38652104 @default.
- W4385385429 hasConcept C41008148 @default.
- W4385385429 hasConcept C552425265 @default.
- W4385385429 hasConceptScore W4385385429C111919701 @default.
- W4385385429 hasConceptScore W4385385429C127413603 @default.
- W4385385429 hasConceptScore W4385385429C154945302 @default.
- W4385385429 hasConceptScore W4385385429C17744445 @default.
- W4385385429 hasConceptScore W4385385429C187191949 @default.
- W4385385429 hasConceptScore W4385385429C199539241 @default.
- W4385385429 hasConceptScore W4385385429C22212356 @default.
- W4385385429 hasConceptScore W4385385429C2776034591 @default.
- W4385385429 hasConceptScore W4385385429C33724603 @default.
- W4385385429 hasConceptScore W4385385429C38652104 @default.
- W4385385429 hasConceptScore W4385385429C41008148 @default.
- W4385385429 hasConceptScore W4385385429C552425265 @default.
- W4385385429 hasIssue "9" @default.
- W4385385429 hasLocation W43853854291 @default.
- W4385385429 hasOpenAccess W4385385429 @default.
- W4385385429 hasPrimaryLocation W43853854291 @default.
- W4385385429 hasRelatedWork W1602801198 @default.
- W4385385429 hasRelatedWork W2005996081 @default.
- W4385385429 hasRelatedWork W2090577974 @default.
- W4385385429 hasRelatedWork W2348361596 @default.
- W4385385429 hasRelatedWork W2508379062 @default.
- W4385385429 hasRelatedWork W2528881115 @default.
- W4385385429 hasRelatedWork W2899084033 @default.
- W4385385429 hasRelatedWork W2902539404 @default.
- W4385385429 hasRelatedWork W2940697376 @default.
- W4385385429 hasRelatedWork W3202124128 @default.
- W4385385429 hasVolume "7" @default.
- W4385385429 isParatext "false" @default.
- W4385385429 isRetracted "false" @default.
- W4385385429 workType "article" @default.