Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385389231> ?p ?o ?g. }
- W4385389231 endingPage "e18819" @default.
- W4385389231 startingPage "e18819" @default.
- W4385389231 abstract "This study investigates the application of the Gaussian Radial Basis Function Neural Network (GRNN), Gaussian Process Regression (GPR), and Multilayer Perceptron Optimized by Particle Swarm Optimization (MLP-PSO) models in analyzing the relationship between rainfall and runoff and in predicting runoff discharge. These models utilize autoregressive input vectors based on daily-observed TRMM rainfall and TMR inflow data. The performance evaluation of each model is conducted using statistical measures to compare their effectiveness in capturing the complex relationships between input and output variables. The results consistently demonstrate that the MLP-PSO model outperforms the GRNN and GPR models, achieving the lowest root mean square error (RMSE) across multiple input combinations. Furthermore, the study explores the application of the Empirical Mode Decomposition-Hilbert-Huang Transform (EMD-HHT) in conjunction with the GPR and MLP-PSO models. This combination yields promising results in streamflow prediction, with the MLP-PSO-EMD model exhibiting superior accuracy compared to the GPR-EMD model. The incorporation of different components into the MLP-PSO-EMD model significantly improves its accuracy. Among the presented scenarios, Model M4, which incorporates the simplest components, emerges as the most favorable choice due to its lowest RMSE values. Comparisons with other models reported in the literature further underscore the effectiveness of the MLP-PSO-EMD model in streamflow prediction. This study offers valuable insights into the selection and performance of different models for rainfall-runoff analysis and prediction." @default.
- W4385389231 created "2023-07-30" @default.
- W4385389231 creator A5009527124 @default.
- W4385389231 creator A5012458451 @default.
- W4385389231 creator A5016049562 @default.
- W4385389231 creator A5022237748 @default.
- W4385389231 creator A5023792894 @default.
- W4385389231 creator A5040561547 @default.
- W4385389231 creator A5045071979 @default.
- W4385389231 creator A5049310447 @default.
- W4385389231 creator A5052536789 @default.
- W4385389231 creator A5066063194 @default.
- W4385389231 creator A5091285252 @default.
- W4385389231 date "2023-08-01" @default.
- W4385389231 modified "2023-10-16" @default.
- W4385389231 title "Assessment of hybrid machine learning algorithms using TRMM rainfall data for daily inflow forecasting in Três Marias Reservoir, eastern Brazil" @default.
- W4385389231 cites W1979653734 @default.
- W4385389231 cites W2007221293 @default.
- W4385389231 cites W2018343343 @default.
- W4385389231 cites W2080552614 @default.
- W4385389231 cites W2093859742 @default.
- W4385389231 cites W2149723649 @default.
- W4385389231 cites W2165761444 @default.
- W4385389231 cites W2180177347 @default.
- W4385389231 cites W2300217830 @default.
- W4385389231 cites W2441507532 @default.
- W4385389231 cites W2477041072 @default.
- W4385389231 cites W2508967951 @default.
- W4385389231 cites W2603668603 @default.
- W4385389231 cites W2610976241 @default.
- W4385389231 cites W2788591208 @default.
- W4385389231 cites W2887196807 @default.
- W4385389231 cites W2897933301 @default.
- W4385389231 cites W2900459298 @default.
- W4385389231 cites W2901970453 @default.
- W4385389231 cites W2922558069 @default.
- W4385389231 cites W2946998124 @default.
- W4385389231 cites W2954327213 @default.
- W4385389231 cites W2969238322 @default.
- W4385389231 cites W2980667597 @default.
- W4385389231 cites W2983385682 @default.
- W4385389231 cites W3016884076 @default.
- W4385389231 cites W3024360037 @default.
- W4385389231 cites W3025192788 @default.
- W4385389231 cites W3033074744 @default.
- W4385389231 cites W3033993412 @default.
- W4385389231 cites W3039344276 @default.
- W4385389231 cites W3043476082 @default.
- W4385389231 cites W3098316261 @default.
- W4385389231 cites W3134702559 @default.
- W4385389231 cites W3137402335 @default.
- W4385389231 cites W3148482332 @default.
- W4385389231 cites W3149661898 @default.
- W4385389231 cites W3155652115 @default.
- W4385389231 cites W3170247365 @default.
- W4385389231 cites W3177177588 @default.
- W4385389231 cites W3178810976 @default.
- W4385389231 cites W3196897376 @default.
- W4385389231 cites W3213623998 @default.
- W4385389231 cites W3216691447 @default.
- W4385389231 cites W4200361024 @default.
- W4385389231 cites W4200551443 @default.
- W4385389231 cites W4205851056 @default.
- W4385389231 cites W4206621903 @default.
- W4385389231 cites W4223939873 @default.
- W4385389231 cites W4229028179 @default.
- W4385389231 cites W4229043390 @default.
- W4385389231 cites W4231461627 @default.
- W4385389231 cites W4281612463 @default.
- W4385389231 cites W4284975450 @default.
- W4385389231 cites W4285594059 @default.
- W4385389231 cites W4289522637 @default.
- W4385389231 cites W4296990344 @default.
- W4385389231 cites W4300862352 @default.
- W4385389231 cites W4310071911 @default.
- W4385389231 cites W4362658785 @default.
- W4385389231 cites W4366779438 @default.
- W4385389231 cites W4378222085 @default.
- W4385389231 doi "https://doi.org/10.1016/j.heliyon.2023.e18819" @default.
- W4385389231 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37593632" @default.
- W4385389231 hasPublicationYear "2023" @default.
- W4385389231 type Work @default.
- W4385389231 citedByCount "1" @default.
- W4385389231 countsByYear W43853892312023 @default.
- W4385389231 crossrefType "journal-article" @default.
- W4385389231 hasAuthorship W4385389231A5009527124 @default.
- W4385389231 hasAuthorship W4385389231A5012458451 @default.
- W4385389231 hasAuthorship W4385389231A5016049562 @default.
- W4385389231 hasAuthorship W4385389231A5022237748 @default.
- W4385389231 hasAuthorship W4385389231A5023792894 @default.
- W4385389231 hasAuthorship W4385389231A5040561547 @default.
- W4385389231 hasAuthorship W4385389231A5045071979 @default.
- W4385389231 hasAuthorship W4385389231A5049310447 @default.
- W4385389231 hasAuthorship W4385389231A5052536789 @default.
- W4385389231 hasAuthorship W4385389231A5066063194 @default.
- W4385389231 hasAuthorship W4385389231A5091285252 @default.
- W4385389231 hasBestOaLocation W43853892311 @default.
- W4385389231 hasConcept C105795698 @default.