Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385398435> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4385398435 abstract "<h3>Introduction</h3> Mechanical Thrombectomy (MT) is the standard-of-care in the interventional management of Acute Ischemic Stroke (AIS). The NVQI-QOD AIS Thrombectomy Registry documents detailed patient characteristics, pre-operative imaging, procedural metrics, and post-operative outcomes. Although these data are highly informative, there is inherent uncertainty in all medical interventions, so patient outcomes remain variable after intervention. <h3>Methods</h3> We identified three groups of feature variables from the NVQI-QOD registry, including data available prior to MT (Group Preop), post MT (Group Postop), and at discharge (Group DC). We introduced a Probabilistic Neural Network (PNN) that predicts the expected distribution of NIH Stroke Scale (NIHSS) changes from pre-intervention to discharge and the binary severity categories derived from a 90-day follow-up modified Rankin Scale (mRS), using the three groups of feature variables as inputs. Numerous machine learning studies and competitions have demonstrated that XGBoost is a high-performance prediction model, so the predictions of the PNN were compared to those predicted by XGBoost. Furthermore, both PNN and XGBoost were trained using bagging ensemble learning, a technique for training an ensemble of multiple member models based on bootstrapping to improve prediction robustness. <h3>Results</h3> For both regression and classification, there were almost no differences in the prediction performance between the PNN and XGBoost ensembles. Prediction accuracy was improved when more correlated feature variables were available (from Group Preop to Group DC). For example, the best performance was achieved using Group Postop in regression of NIHSS changes (RMSE: 4.34 for PNN vs. 4.30 for XGBoost) and using Group DC in classification of mRS severity (accuracy: 0.78 for PNN vs. 0.77 for XGBoost; the same trend using different feature groups can be found in other measures, such as precision, recall, F1-scoure, and AUC-ROC). Furthermore, PNN accurately described the distributions of NIHSS changes represented by predicted means and SDs. Notably, in Group Preop, even patients with the worst predicted outcomes had an approximately 50% chance of improvement. Feature importance analysis showed that both the predictions of the NIHSS changes and mRS severity primarily relied on earlier NIHSS, Pre mRS, and patient age. <h3>Conclusions</h3> This study demonstrates the utility of probabilistic ensemble learning in clinical decision-making and prognosis. It can provide robust predictions as well as quantify data uncertainty. Our results regarding NIHSS changes reinforce the substantial benefits of MT, that can improve outcomes in nearly half of patients. The degree of disability relevant to the 90-day follow-up mRS can be determined by probabilistic learning available as early as discharge. <h3>Disclosures</h3> <b>C. Zhou:</b> None. <b>S. Faruqui:</b> None. <b>A. Patel:</b> None. <b>R. Abdalla:</b> None. <b>A. Shaibani:</b> None. <b>M. Potts:</b> None. <b>B. Jahromi:</b> None. <b>S. Ansari:</b> None. <b>D. Cantrell:</b> None." @default.
- W4385398435 created "2023-07-31" @default.
- W4385398435 creator A5006823810 @default.
- W4385398435 creator A5013897775 @default.
- W4385398435 creator A5032281595 @default.
- W4385398435 creator A5035325211 @default.
- W4385398435 creator A5046813159 @default.
- W4385398435 creator A5047838033 @default.
- W4385398435 creator A5059446265 @default.
- W4385398435 creator A5065684011 @default.
- W4385398435 creator A5077454047 @default.
- W4385398435 date "2023-07-01" @default.
- W4385398435 modified "2023-10-16" @default.
- W4385398435 title "P-008 Probabilistic ensemble learning for prediction of stroke thrombectomy outcomes from the neurovascular quality initiative-quality outcomes database (NVQI-QOD) registry" @default.
- W4385398435 doi "https://doi.org/10.1136/jnis-2023-snis.80" @default.
- W4385398435 hasPublicationYear "2023" @default.
- W4385398435 type Work @default.
- W4385398435 citedByCount "0" @default.
- W4385398435 crossrefType "proceedings-article" @default.
- W4385398435 hasAuthorship W4385398435A5006823810 @default.
- W4385398435 hasAuthorship W4385398435A5013897775 @default.
- W4385398435 hasAuthorship W4385398435A5032281595 @default.
- W4385398435 hasAuthorship W4385398435A5035325211 @default.
- W4385398435 hasAuthorship W4385398435A5046813159 @default.
- W4385398435 hasAuthorship W4385398435A5047838033 @default.
- W4385398435 hasAuthorship W4385398435A5059446265 @default.
- W4385398435 hasAuthorship W4385398435A5065684011 @default.
- W4385398435 hasAuthorship W4385398435A5077454047 @default.
- W4385398435 hasConcept C106159729 @default.
- W4385398435 hasConcept C119857082 @default.
- W4385398435 hasConcept C138885662 @default.
- W4385398435 hasConcept C151956035 @default.
- W4385398435 hasConcept C154945302 @default.
- W4385398435 hasConcept C162324750 @default.
- W4385398435 hasConcept C207609745 @default.
- W4385398435 hasConcept C2776401178 @default.
- W4385398435 hasConcept C41008148 @default.
- W4385398435 hasConcept C41895202 @default.
- W4385398435 hasConcept C45942800 @default.
- W4385398435 hasConcept C49937458 @default.
- W4385398435 hasConcept C50644808 @default.
- W4385398435 hasConcept C71924100 @default.
- W4385398435 hasConceptScore W4385398435C106159729 @default.
- W4385398435 hasConceptScore W4385398435C119857082 @default.
- W4385398435 hasConceptScore W4385398435C138885662 @default.
- W4385398435 hasConceptScore W4385398435C151956035 @default.
- W4385398435 hasConceptScore W4385398435C154945302 @default.
- W4385398435 hasConceptScore W4385398435C162324750 @default.
- W4385398435 hasConceptScore W4385398435C207609745 @default.
- W4385398435 hasConceptScore W4385398435C2776401178 @default.
- W4385398435 hasConceptScore W4385398435C41008148 @default.
- W4385398435 hasConceptScore W4385398435C41895202 @default.
- W4385398435 hasConceptScore W4385398435C45942800 @default.
- W4385398435 hasConceptScore W4385398435C49937458 @default.
- W4385398435 hasConceptScore W4385398435C50644808 @default.
- W4385398435 hasConceptScore W4385398435C71924100 @default.
- W4385398435 hasLocation W43853984351 @default.
- W4385398435 hasOpenAccess W4385398435 @default.
- W4385398435 hasPrimaryLocation W43853984351 @default.
- W4385398435 hasRelatedWork W2810053714 @default.
- W4385398435 hasRelatedWork W3025582806 @default.
- W4385398435 hasRelatedWork W3136979370 @default.
- W4385398435 hasRelatedWork W4281560664 @default.
- W4385398435 hasRelatedWork W4281757034 @default.
- W4385398435 hasRelatedWork W4285046548 @default.
- W4385398435 hasRelatedWork W4285741730 @default.
- W4385398435 hasRelatedWork W4311847748 @default.
- W4385398435 hasRelatedWork W4313488044 @default.
- W4385398435 hasRelatedWork W4318350883 @default.
- W4385398435 isParatext "false" @default.
- W4385398435 isRetracted "false" @default.
- W4385398435 workType "article" @default.