Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385399993> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4385399993 endingPage "11" @default.
- W4385399993 startingPage "1" @default.
- W4385399993 abstract "No AccessEngineering NotesFuel-Efficient Stationkeeping of Quasi-Satellite Orbits via Convex OptimizationNicolò Bernardini, Nicola Baresi and Roberto ArmellinNicolò BernardiniUniversity of Surrey, Guildford, England GU2 7XH, United Kingdom*Ph.D. Candidate, Surrey Space Centre; .Search for more papers by this author, Nicola Baresi https://orcid.org/0000-0003-4796-7369University of Surrey, Guildford, England GU2 7XH, United Kingdom†Lecturer, Surrey Space Centre; .Search for more papers by this author and Roberto ArmellinUniversity of Auckland, Auckland 1010, New Zealand‡Professor, Te Pūnaha Ātea–Space Institute; .Search for more papers by this authorPublished Online:30 Jul 2023https://doi.org/10.2514/1.G007557SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Burns J. A., “Dynamical Characteristics of Phobos and Deimos,” Reviews of Geophysics, Vol. 10, No. 2, 1972, pp. 463–483. https://doi.org/10.1029/RG010i002p00463 Google Scholar[2] Pajola M., Lazzarin M., Dalle Ore C., Cruikshank D., Roush T., Magrin S., Bertini I., La Forgia F. and Barbieri C., “Phobos as a D-Type Captured Asteroid, Spectral Modeling from 0.25 to 4.0 m,” Astrophysical Journal, Vol. 777, No. 2, 2013, Paper 127. https://doi.org/10.1088/0004-637X/777/2/127 Google Scholar[3] Rosenblatt P., “The Origin of the Martian Moons Revisited,” Astronomy and Astrophysics Review, Vol. 19, No. 1, 2011, Paper 44. https://doi.org/10.1007/s00159-011-0044-6 Google Scholar[4] Campagnola S., Yam C. H., Tsuda Y., Ogawa N. and Kawakatsu Y., “Mission Analysis for the Martian Moons Explorer (MMX) Mission,” Acta Astronautica, Vol. 146, May 2018, pp. 409–417. https://doi.org/10.1016/j.actaastro.2018.03.024 CrossrefGoogle Scholar[5] Baresi N., Dei Tos D. A., Ikeda H. and Kawakatsu Y., “Trajectory Design and Maintenance of the Martian Moons eXploration Mission Around Phobos,” Journal of Guidance, Control, and Dynamics, Vol. 44, No. 5, 2021, pp. 996–1007. https://doi.org/10.2514/1.G005041 LinkGoogle Scholar[6] Marcus G. and Gurfil P., “Mars-Phobos/Deimos Libration Points Revisited,” Advances in Space Research, Vol. 71, No. 8, 2023, pp. 3234–3248. https://doi.org/10.1016/j.asr.2022.11.058 CrossrefGoogle Scholar[7] Canalias E., Lorda L. and Laurent-Varin J., “Design of Realistic Trajectories for the Exploration of Phobos,” 2018 Space Flight Mechanics Meeting, AIAA Paper 2018-0716, 2018. https://doi.org/10.2514/6.2018-0716 Google Scholar[8] Betts J. T., Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, SIAM, Philadelphia, PA, 2010. https://doi.org/10.1137/1.9780898718577 CrossrefGoogle Scholar[9] Howell K. C. and Pernicka H. J., “Station-Keeping Method for Libration Point Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 1, 1993, pp. 151–159. https://doi.org/10.2514/3.11440 LinkGoogle Scholar[10] Drozd K. M., Furfaro R. and Topputo F., “Application of ZEM/ZEV Guidance for Closed-Loop Transfer in the Earth-Moon System,” 2018 Space Flight Mechanics Meeting, AIAA Paper 2018-0958, 2018. https://doi.org/10.2514/6.2018-0958 Google Scholar[11] Cipriano A. M., Dei Tos D. A. and Topputo F., “Orbit Design for LUMIO: The Lunar Meteoroid Impacts Observer,” Frontiers in Astronomy and Space Sciences, Vol. 5, 2018, Paper 29. https://doi.org/10.3389/fspas.2018.00029 Google Scholar[12] Oguri K., Oshima K., Campagnola S., Kakihara K., Ozaki N., Baresi N., Kawakatsu Y. and Funase R., “EQUULEUS Trajectory Design,” Journal of the Astronautical Sciences, Vol. 67, No. 3, 2020, pp. 950–976. https://doi.org/10.1007/s40295-019-00206-y CrossrefGoogle Scholar[13] Fu X., Baresi N. and Armellin R., “Stochastic Optimization for Stationkeeping of Periodic Orbits Using a High-Order Target Point Approach,” Advances in Space Research, Vol. 70, No. 1, 2022, pp. 99–111. https://doi.org/10.1016/j.asr.2022.04.039 Google Scholar[14] Boyd S., Boyd S. P. and Vandenberghe L., Convex Optimization, Cambridge Univ. Press, Cambridge, England, U.K., 2004. https://doi.org/10.1017/CBO9780511804441 CrossrefGoogle Scholar[15] Açkmeşe B. and Blackmore L., “Lossless Convexification of a Class of Optimal Control Problems with Non-Convex Control Constraints,” Automatica, Vol. 47, No. 2, 2011, pp. 341–347. https://doi.org/10.1016/j.automatica.2010.10.037 CrossrefGoogle Scholar[16] Mao Y., Szmuk M. and Açkmeşe B., “Successive Convexification of Non-Convex Optimal Control Problems and its Convergence Properties,” 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE, New York, 2016, pp. 3636–3641. https://doi.org/10.1109/CDC.2016.7798816 Google Scholar[17] Hofmann C. and Topputo F., “Rapid Low-Thrust Trajectory Optimization in Deep Space Based on Convex Programming,” Journal of Guidance, Control, and Dynamics, Vol. 44, No. 7, 2021, pp. 1379–1388. https://doi.org/10.2514/1.G005839 LinkGoogle Scholar[18] Armellin R., “Collision Avoidance Maneuver Optimization with a Multiple-Impulse Convex Formulation,” Acta Astronautica, Vol. 186, Sept. 2021, pp. 347–362. https://doi.org/10.1016/j.actaastro.2021.05.046 CrossrefGoogle Scholar[19] Kayama Y., Howell K. C., Bando M. and Hokamoto S., “Low-Thrust Trajectory Design with Successive Convex Optimization for Libration Point Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 45, No. 4, 2022, pp. 623–637. https://doi.org/10.2514/1.G005916 LinkGoogle Scholar[20] Scheeres D., Van wal S., Olikara Z. and Baresi N., “Dynamics in the Phobos Environment,” Advances in Space Research, Vol. 63, No. 1, 2019, pp. 476–495, https://www.sciencedirect.com/science/article/pii/S0273117718307853. https://doi.org/10.1016/j.asr.2018.10.016 CrossrefGoogle Scholar[21] Carlson B., “Computing Elliptic Integrals by Duplication,” Numerische Mathematik, Vol. 33, No. 1, 1979, pp. 1–16. https://doi.org/10.1007/BF01396491 CrossrefGoogle Scholar[22] Kawakatsu Y., Kuramoto K., Usui T., Sugahara H., Ootake H., Yasumitsu R., Yoshikawa K., Mary S., Grebenstein M., Sawada H. and Imada T., “Preliminary Design of Martian Moons eXploration (MMX),” Acta Astronautica, Vol. 202, Jan. 2023, pp. 715–728. https://doi.org/10.1016/j.actaastro.2022.09.009 CrossrefGoogle Scholar[23] Olikara Z. P., “Computation of Quasi-Periodic Tori and Heteroclinic Connections in Astrodynamics Using Collocation Techniques,” Ph.D. Thesis, Univ. of Colorado at Boulder, Boulder, CO, 2016. Google Scholar[24] Ciccarelli E. and Baresi N., “Consider Covariance Analyses of Periodic and Quasi-Periodic Orbits Around Phobos,” AAS/AIAA Astrodynamics Specialist Conference, Aug. 2021. Google Scholar[25] Scheeres D. and Marzari F., “Spacecraft Dynamics in the Vicinity of a Comet,” Journal of the Astronautical Sciences, Vol. 50, March 2002, pp. 35–52. https://doi.org/10.1007/BF03546329 CrossrefGoogle Scholar[26] Szmuk M. and Acikmese B., “Successive Convexification for 6-DOF Mars Rocket Powered Landing with Free-Final-Time,” 2018 AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2018-0617, 2018. https://doi.org/10.2514/6.2018-0617 LinkGoogle Scholar[27] Armellin R., Di Lizia P., Bernelli-Zazzera F. and Berz M., “Asteroid Close Encounters Characterization Using Differential Algebra: The Case of Apophis,” Celestial Mechanics and Dynamical Astronomy, Vol. 107, No. 4, 2010, pp. 451–470. https://doi.org/10.1007/s10569-010-9283-5 CrossrefGoogle Scholar[28] Reynolds T., Malyuta D., Mesbahi M., Acikmese B. and Carson J. M., “A Real-Time Algorithm for Non-Convex Powered Descent Guidance,” AIAA SciTech 2020 Forum, AIAA Paper 2020-0844, 2020. https://doi.org/10.2514/6.2020-0844 LinkGoogle Scholar[29] Mao Y., Szmuk M. and Açkmeşe B., “A Tutorial on Real-Time Convex Optimization Based Guidance and Control for Aerospace Applications,” 2018 Annual American Control Conference (ACC), IEEE, New York, 2018, pp. 2410–2416. https://doi.org/10.23919/ACC.2018.8430984 Google Scholar[30] Reynolds T. P. and Mesbahi M., “The Crawling Phenomenon in Sequential Convex Programming,” 2020 American Control Conference (ACC), IEEE, New York, 2020, pp. 3613–3618. https://doi.org/10.23919/ACC45564.2020.9147550 Google Scholar[31] Schutz B., Tapley B. and Born G. H., Statistical Orbit Determination, Elsevier, New York, 2004, Chap. F3. https://doi.org/10.1016/B978-0-12-683630-1.X5019-X Google Scholar[32] Bryson A. E. and Ho Y.-C., Applied Optimal Control: Optimization, Estimation, and Control, Routledge, Abingdon-on-Thames, England, U.K., 2018. https://doi.org/10.1201/9781315137667 Google Scholar[33] Patterson M. A. and Rao A. V., “GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming,” ACM Transactions on Mathematical Software (TOMS), Vol. 41, No. 1, 2014, pp. 1–37. https://doi.org/10.1145/2558904 CrossrefGoogle Scholar[34] Ross I. M. and Karpenko M., “A Review of Pseudospectral Optimal Control: From Theory to Flight,” Annual Reviews in Control, Vol. 36, No. 2, 2012, pp. 182–197. https://doi.org/10.1016/j.arcontrol.2012.09.002 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Articles in Advance CrossmarkInformationCopyright © 2023 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsApplied MathematicsControl TheoryGeneral PhysicsGuidance, Navigation, and Control SystemsMathematical OptimizationOptimal Control Theory KeywordsOptimal Control ProblemConvex Optimizationplanetary moonsQuasi-satellite orbitStation-keepingAcknowledgmentThe work was partially funded by the French Space Agency’s National Center for Space Studies under research contract R-S20/BS-0005-069.PDF Received27 February 2023Accepted21 June 2023Published online30 July 2023" @default.
- W4385399993 created "2023-07-31" @default.
- W4385399993 creator A5050067041 @default.
- W4385399993 creator A5054647725 @default.
- W4385399993 date "2023-07-30" @default.
- W4385399993 modified "2023-09-27" @default.
- W4385399993 title "Fuel-Efficient Stationkeeping of Quasi-Satellite Orbits via Convex Optimization" @default.
- W4385399993 cites W165481302 @default.
- W4385399993 cites W2003504038 @default.
- W4385399993 cites W2004225042 @default.
- W4385399993 cites W2014086340 @default.
- W4385399993 cites W2021748044 @default.
- W4385399993 cites W2022811641 @default.
- W4385399993 cites W2026570525 @default.
- W4385399993 cites W2130527887 @default.
- W4385399993 cites W2131281229 @default.
- W4385399993 cites W2149842790 @default.
- W4385399993 cites W2221321873 @default.
- W4385399993 cites W2791999564 @default.
- W4385399993 cites W2798500587 @default.
- W4385399993 cites W2892340609 @default.
- W4385399993 cites W2896209969 @default.
- W4385399993 cites W2996813869 @default.
- W4385399993 cites W3001757761 @default.
- W4385399993 cites W3100727880 @default.
- W4385399993 cites W3117256934 @default.
- W4385399993 cites W3135755090 @default.
- W4385399993 cites W3162910338 @default.
- W4385399993 cites W4210591837 @default.
- W4385399993 cites W4250589301 @default.
- W4385399993 cites W4307819280 @default.
- W4385399993 cites W4312117957 @default.
- W4385399993 doi "https://doi.org/10.2514/1.g007557" @default.
- W4385399993 hasPublicationYear "2023" @default.
- W4385399993 type Work @default.
- W4385399993 citedByCount "0" @default.
- W4385399993 crossrefType "journal-article" @default.
- W4385399993 hasAuthorship W4385399993A5050067041 @default.
- W4385399993 hasAuthorship W4385399993A5054647725 @default.
- W4385399993 hasConcept C112680207 @default.
- W4385399993 hasConcept C127413603 @default.
- W4385399993 hasConcept C146978453 @default.
- W4385399993 hasConcept C154945302 @default.
- W4385399993 hasConcept C157972887 @default.
- W4385399993 hasConcept C19269812 @default.
- W4385399993 hasConcept C2524010 @default.
- W4385399993 hasConcept C2775924081 @default.
- W4385399993 hasConcept C33923547 @default.
- W4385399993 hasConcept C41008148 @default.
- W4385399993 hasConcept C47446073 @default.
- W4385399993 hasConceptScore W4385399993C112680207 @default.
- W4385399993 hasConceptScore W4385399993C127413603 @default.
- W4385399993 hasConceptScore W4385399993C146978453 @default.
- W4385399993 hasConceptScore W4385399993C154945302 @default.
- W4385399993 hasConceptScore W4385399993C157972887 @default.
- W4385399993 hasConceptScore W4385399993C19269812 @default.
- W4385399993 hasConceptScore W4385399993C2524010 @default.
- W4385399993 hasConceptScore W4385399993C2775924081 @default.
- W4385399993 hasConceptScore W4385399993C33923547 @default.
- W4385399993 hasConceptScore W4385399993C41008148 @default.
- W4385399993 hasConceptScore W4385399993C47446073 @default.
- W4385399993 hasLocation W43853999931 @default.
- W4385399993 hasOpenAccess W4385399993 @default.
- W4385399993 hasPrimaryLocation W43853999931 @default.
- W4385399993 hasRelatedWork W1507232051 @default.
- W4385399993 hasRelatedWork W1595699755 @default.
- W4385399993 hasRelatedWork W2021589839 @default.
- W4385399993 hasRelatedWork W2032721083 @default.
- W4385399993 hasRelatedWork W2100280334 @default.
- W4385399993 hasRelatedWork W2156800215 @default.
- W4385399993 hasRelatedWork W2380105098 @default.
- W4385399993 hasRelatedWork W2383436484 @default.
- W4385399993 hasRelatedWork W3158871339 @default.
- W4385399993 hasRelatedWork W4239141289 @default.
- W4385399993 isParatext "false" @default.
- W4385399993 isRetracted "false" @default.
- W4385399993 workType "article" @default.