Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385402941> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4385402941 endingPage "424" @default.
- W4385402941 startingPage "418" @default.
- W4385402941 abstract "This work provides an overview of the research that has been done on using Computer-Aided Detection (CAD) for the diagnosis of breast cancer. The focus is on mammographic and histopathology images and the different techniques used for image pre-processing, segmentation, and classification. The accuracy of the different algorithms was evaluated on different datasets, including MIAS, IRMA, DDSM, and CBIS-DDSM, and the results showed that deep learning models such as Convolutional Neural Networks (CNNs) and Random Forest, along with Multi-Layer Perception and Nave Bayes, were effective in detecting and classifying breast cancer. The results of these studies show the potential of CAD in making the diagnosis of breast cancer easier and more accurate. In the segmentation stage, the U-Net model has been modified to perform better in terms of accuracy. The DDSM database has been found to have a higher accuracy percentage compared to the MIAS and CBIS-DDSM databases. This indicates that the modified U-Net model has performed well on the DDSM database in terms of accurately segmenting the images. The use of Computer Aided Diagnosis (CAD) has improved the accuracy of breast cancer diagnosis in mammography and histopathology images. The four-step process of preprocessing, segmentation, feature extraction, and classification has proven to be effective in detecting malignant and benign tumors. Different algorithms like Naive Bayes, Multilayer Perception, Random Forest, and Convolutional Neural Network (CNN) have been used with varying accuracy levels. The best results were obtained by using the modified U-Net model for segmentation and the Random Forest algorithm for classification, as they showed higher accuracy compared to other methods and databases. In this study it has been analyzed that the use of Computer-Aided Diagnosis (CAD) in mammography and histopathology images has shown promising results in the diagnosis of breast cancer. Different algorithms and techniques have been used to improve the accuracy of the classification of malignant and benign tumors. The MIAS database has shown the best results when using a Convolutional Neural Network approach. However, histopathology images have some limitations in comparison to radiologist images, but the use of CAD is still an important tool in cancer diagnosis." @default.
- W4385402941 created "2023-07-31" @default.
- W4385402941 creator A5000966033 @default.
- W4385402941 creator A5003218722 @default.
- W4385402941 creator A5011020166 @default.
- W4385402941 creator A5021949934 @default.
- W4385402941 creator A5044933971 @default.
- W4385402941 creator A5055965654 @default.
- W4385402941 creator A5058103921 @default.
- W4385402941 date "2023-08-01" @default.
- W4385402941 modified "2023-10-14" @default.
- W4385402941 title "Blockchain and Classification of Mammograms and Histopathology Images in Breast Cancer Lesions" @default.
- W4385402941 doi "https://doi.org/10.54254/2755-2721/8/20230208" @default.
- W4385402941 hasPublicationYear "2023" @default.
- W4385402941 type Work @default.
- W4385402941 citedByCount "0" @default.
- W4385402941 crossrefType "journal-article" @default.
- W4385402941 hasAuthorship W4385402941A5000966033 @default.
- W4385402941 hasAuthorship W4385402941A5003218722 @default.
- W4385402941 hasAuthorship W4385402941A5011020166 @default.
- W4385402941 hasAuthorship W4385402941A5021949934 @default.
- W4385402941 hasAuthorship W4385402941A5044933971 @default.
- W4385402941 hasAuthorship W4385402941A5055965654 @default.
- W4385402941 hasAuthorship W4385402941A5058103921 @default.
- W4385402941 hasBestOaLocation W43854029411 @default.
- W4385402941 hasConcept C121608353 @default.
- W4385402941 hasConcept C12267149 @default.
- W4385402941 hasConcept C124504099 @default.
- W4385402941 hasConcept C126322002 @default.
- W4385402941 hasConcept C127413603 @default.
- W4385402941 hasConcept C153180895 @default.
- W4385402941 hasConcept C154945302 @default.
- W4385402941 hasConcept C169258074 @default.
- W4385402941 hasConcept C194789388 @default.
- W4385402941 hasConcept C199639397 @default.
- W4385402941 hasConcept C2779549770 @default.
- W4385402941 hasConcept C2780472235 @default.
- W4385402941 hasConcept C34736171 @default.
- W4385402941 hasConcept C41008148 @default.
- W4385402941 hasConcept C52001869 @default.
- W4385402941 hasConcept C52622490 @default.
- W4385402941 hasConcept C530470458 @default.
- W4385402941 hasConcept C71924100 @default.
- W4385402941 hasConcept C81363708 @default.
- W4385402941 hasConcept C89600930 @default.
- W4385402941 hasConceptScore W4385402941C121608353 @default.
- W4385402941 hasConceptScore W4385402941C12267149 @default.
- W4385402941 hasConceptScore W4385402941C124504099 @default.
- W4385402941 hasConceptScore W4385402941C126322002 @default.
- W4385402941 hasConceptScore W4385402941C127413603 @default.
- W4385402941 hasConceptScore W4385402941C153180895 @default.
- W4385402941 hasConceptScore W4385402941C154945302 @default.
- W4385402941 hasConceptScore W4385402941C169258074 @default.
- W4385402941 hasConceptScore W4385402941C194789388 @default.
- W4385402941 hasConceptScore W4385402941C199639397 @default.
- W4385402941 hasConceptScore W4385402941C2779549770 @default.
- W4385402941 hasConceptScore W4385402941C2780472235 @default.
- W4385402941 hasConceptScore W4385402941C34736171 @default.
- W4385402941 hasConceptScore W4385402941C41008148 @default.
- W4385402941 hasConceptScore W4385402941C52001869 @default.
- W4385402941 hasConceptScore W4385402941C52622490 @default.
- W4385402941 hasConceptScore W4385402941C530470458 @default.
- W4385402941 hasConceptScore W4385402941C71924100 @default.
- W4385402941 hasConceptScore W4385402941C81363708 @default.
- W4385402941 hasConceptScore W4385402941C89600930 @default.
- W4385402941 hasIssue "1" @default.
- W4385402941 hasLocation W43854029411 @default.
- W4385402941 hasOpenAccess W4385402941 @default.
- W4385402941 hasPrimaryLocation W43854029411 @default.
- W4385402941 hasRelatedWork W1582206143 @default.
- W4385402941 hasRelatedWork W2126100045 @default.
- W4385402941 hasRelatedWork W2146076056 @default.
- W4385402941 hasRelatedWork W2391959412 @default.
- W4385402941 hasRelatedWork W2811390910 @default.
- W4385402941 hasRelatedWork W2982908137 @default.
- W4385402941 hasRelatedWork W4200528772 @default.
- W4385402941 hasRelatedWork W4283776244 @default.
- W4385402941 hasRelatedWork W4312376745 @default.
- W4385402941 hasRelatedWork W434444324 @default.
- W4385402941 hasVolume "8" @default.
- W4385402941 isParatext "false" @default.
- W4385402941 isRetracted "false" @default.
- W4385402941 workType "article" @default.