Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385405616> ?p ?o ?g. }
- W4385405616 endingPage "1173" @default.
- W4385405616 startingPage "1163" @default.
- W4385405616 abstract "Abstract Background Development of a short timeframe (6–12 months) kidney failure risk prediction model may serve to improve transitions from advanced chronic kidney disease (CKD) to kidney failure and reduce rates of unplanned dialysis. The optimal model for short timeframe kidney failure risk prediction remains unknown. Methods This retrospective study included 1757 consecutive patients with advanced CKD (mean age 66 years, estimated glomerular filtration rate 18 mL/min/1.73 m2). We compared the performance of Cox regression models using (a) baseline variables alone, (b) time-varying variables and machine learning models, (c) random survival forest, (d) random forest classifier in the prediction of kidney failure over 6/12/24 months. Performance metrics included area under the receiver operating characteristic curve (AUC-ROC) and maximum precision at 70% recall (PrRe70). Top-performing models were applied to 2 independent external cohorts. Results Compared to the baseline Cox model, the machine learning and time-varying Cox models demonstrated higher 6-month performance [Cox baseline: AUC-ROC 0.85 (95% CI 0.84–0.86), PrRe70 0.53 (95% CI 0.51–0.55); Cox time-varying: AUC-ROC 0.88 (95% CI 0.87–0.89), PrRe70 0.62 (95% CI 0.60–0.64); random survival forest: AUC-ROC 0.87 (95% CI 0.86–0.88), PrRe70 0.61 (95% CI 0.57–0.64); random forest classifier AUC-ROC 0.88 (95% CI 0.87–0.89), PrRe70 0.62 (95% CI 0.59–0.65)]. These trends persisted, but were less pronounced, at 12 months. The random forest classifier was the highest performing model at 6 and 12 months. At 24 months, all models performed similarly. Model performance did not significantly degrade upon external validation. Conclusions When predicting kidney failure over short timeframes among patients with advanced CKD, machine learning incorporating time-updated data provides enhanced performance compared with traditional Cox models." @default.
- W4385405616 created "2023-08-01" @default.
- W4385405616 creator A5001835283 @default.
- W4385405616 creator A5006140709 @default.
- W4385405616 creator A5007444643 @default.
- W4385405616 creator A5021174046 @default.
- W4385405616 creator A5025860856 @default.
- W4385405616 creator A5030907836 @default.
- W4385405616 creator A5063670543 @default.
- W4385405616 creator A5078223816 @default.
- W4385405616 creator A5086132292 @default.
- W4385405616 creator A5089130962 @default.
- W4385405616 date "2023-07-31" @default.
- W4385405616 modified "2023-10-05" @default.
- W4385405616 title "Short Timeframe Prediction of Kidney Failure among Patients with Advanced Chronic Kidney Disease" @default.
- W4385405616 cites W1910421114 @default.
- W4385405616 cites W2008231801 @default.
- W4385405616 cites W2017217416 @default.
- W4385405616 cites W2026482793 @default.
- W4385405616 cites W2052179321 @default.
- W4385405616 cites W2052408711 @default.
- W4385405616 cites W2064282610 @default.
- W4385405616 cites W2108882014 @default.
- W4385405616 cites W2126880050 @default.
- W4385405616 cites W2129888542 @default.
- W4385405616 cites W2136840691 @default.
- W4385405616 cites W2138969149 @default.
- W4385405616 cites W2139537766 @default.
- W4385405616 cites W2165817472 @default.
- W4385405616 cites W2167737548 @default.
- W4385405616 cites W2170705100 @default.
- W4385405616 cites W2181865347 @default.
- W4385405616 cites W2234357320 @default.
- W4385405616 cites W2525237094 @default.
- W4385405616 cites W2565277543 @default.
- W4385405616 cites W2794560981 @default.
- W4385405616 cites W2905034532 @default.
- W4385405616 cites W2906525988 @default.
- W4385405616 cites W3005957464 @default.
- W4385405616 cites W3081607022 @default.
- W4385405616 cites W3083804794 @default.
- W4385405616 cites W3134566315 @default.
- W4385405616 cites W4214667402 @default.
- W4385405616 cites W4280580328 @default.
- W4385405616 cites W4280619993 @default.
- W4385405616 cites W601095000 @default.
- W4385405616 doi "https://doi.org/10.1093/clinchem/hvad112" @default.
- W4385405616 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37522430" @default.
- W4385405616 hasPublicationYear "2023" @default.
- W4385405616 type Work @default.
- W4385405616 citedByCount "0" @default.
- W4385405616 crossrefType "journal-article" @default.
- W4385405616 hasAuthorship W4385405616A5001835283 @default.
- W4385405616 hasAuthorship W4385405616A5006140709 @default.
- W4385405616 hasAuthorship W4385405616A5007444643 @default.
- W4385405616 hasAuthorship W4385405616A5021174046 @default.
- W4385405616 hasAuthorship W4385405616A5025860856 @default.
- W4385405616 hasAuthorship W4385405616A5030907836 @default.
- W4385405616 hasAuthorship W4385405616A5063670543 @default.
- W4385405616 hasAuthorship W4385405616A5078223816 @default.
- W4385405616 hasAuthorship W4385405616A5086132292 @default.
- W4385405616 hasAuthorship W4385405616A5089130962 @default.
- W4385405616 hasConcept C10515644 @default.
- W4385405616 hasConcept C119857082 @default.
- W4385405616 hasConcept C126322002 @default.
- W4385405616 hasConcept C159641895 @default.
- W4385405616 hasConcept C169258074 @default.
- W4385405616 hasConcept C2778653478 @default.
- W4385405616 hasConcept C2779978075 @default.
- W4385405616 hasConcept C41008148 @default.
- W4385405616 hasConcept C50382708 @default.
- W4385405616 hasConcept C58471807 @default.
- W4385405616 hasConcept C71924100 @default.
- W4385405616 hasConceptScore W4385405616C10515644 @default.
- W4385405616 hasConceptScore W4385405616C119857082 @default.
- W4385405616 hasConceptScore W4385405616C126322002 @default.
- W4385405616 hasConceptScore W4385405616C159641895 @default.
- W4385405616 hasConceptScore W4385405616C169258074 @default.
- W4385405616 hasConceptScore W4385405616C2778653478 @default.
- W4385405616 hasConceptScore W4385405616C2779978075 @default.
- W4385405616 hasConceptScore W4385405616C41008148 @default.
- W4385405616 hasConceptScore W4385405616C50382708 @default.
- W4385405616 hasConceptScore W4385405616C58471807 @default.
- W4385405616 hasConceptScore W4385405616C71924100 @default.
- W4385405616 hasIssue "10" @default.
- W4385405616 hasLocation W43854056161 @default.
- W4385405616 hasLocation W43854056162 @default.
- W4385405616 hasOpenAccess W4385405616 @default.
- W4385405616 hasPrimaryLocation W43854056161 @default.
- W4385405616 hasRelatedWork W1605641829 @default.
- W4385405616 hasRelatedWork W1999577714 @default.
- W4385405616 hasRelatedWork W2038797977 @default.
- W4385405616 hasRelatedWork W2079680494 @default.
- W4385405616 hasRelatedWork W2550747973 @default.
- W4385405616 hasRelatedWork W2780872730 @default.
- W4385405616 hasRelatedWork W4365511089 @default.
- W4385405616 hasRelatedWork W4377564255 @default.
- W4385405616 hasRelatedWork W4385514925 @default.