Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385407859> ?p ?o ?g. }
- W4385407859 endingPage "109502" @default.
- W4385407859 startingPage "109502" @default.
- W4385407859 abstract "Most chemical processes are time-varying and nonlinear due to load changes, product demand transitions or other causes, causing unsatisfactory performance of conventional non-parametric multivariate statistical fault detection method. In this work, a probabilistic multivariate state estimation fault detection method based on multi-output Gaussian process autoregression is first developed to overcome the linear limitation and noise information ignorance of multivariate state estimation technology-based fault detection methods. In multi-output Gaussian process regression framework, the Leave-One-Sample-Out strategy is developed to construct the dataset by leaving each historical sample from the memory matrix out as one training output in turn while regarding the corresponding remaining historical samples as one training input. Then, we design the multi-output Gaussian process autoregression model to estimate the current state of the system. Utilizing the estimation covariance information, a probabilistic index based on multivariate Kullback-Leibler divergence is developed for fault detection. Moreover, a multi-scale adaptive fault detection enhancement based on discrete multi-objective Archimedes optimization and just-in-time learning is further proposed to handle the time-varying problem. In this scheme, the memory matrix is batch-adaptively updated at monthly intervals based on discrete multi-objective Archimedes optimization to handle the slow change of system characteristics caused by equipment degradation. On the other hand, to cope with the rapid change of system characteristics caused by operation transition, the just-in-time learning is employed to select samples from the memory matrix that best match to the current system state for sample-adaptive updating. Finally, two industrial cases are used to verify the performance of the proposed method." @default.
- W4385407859 created "2023-08-01" @default.
- W4385407859 creator A5017074061 @default.
- W4385407859 creator A5020120796 @default.
- W4385407859 creator A5030250813 @default.
- W4385407859 creator A5056102765 @default.
- W4385407859 creator A5074890736 @default.
- W4385407859 date "2023-09-01" @default.
- W4385407859 modified "2023-10-16" @default.
- W4385407859 title "Multi-scale adaptive multivariate state estimation fault detection enhancement for time-varying industrial system based on multi-output Gaussian process autoregression" @default.
- W4385407859 cites W1971037264 @default.
- W4385407859 cites W1990603278 @default.
- W4385407859 cites W1994505190 @default.
- W4385407859 cites W1999645011 @default.
- W4385407859 cites W2004186751 @default.
- W4385407859 cites W2094298886 @default.
- W4385407859 cites W2473060649 @default.
- W4385407859 cites W2530185218 @default.
- W4385407859 cites W2772308093 @default.
- W4385407859 cites W2897866317 @default.
- W4385407859 cites W2905359601 @default.
- W4385407859 cites W2911616583 @default.
- W4385407859 cites W2939985247 @default.
- W4385407859 cites W2952078227 @default.
- W4385407859 cites W2983290144 @default.
- W4385407859 cites W3000422124 @default.
- W4385407859 cites W3007832517 @default.
- W4385407859 cites W3011387335 @default.
- W4385407859 cites W3023056142 @default.
- W4385407859 cites W3045102587 @default.
- W4385407859 cites W3088872406 @default.
- W4385407859 cites W3090396243 @default.
- W4385407859 cites W3119254605 @default.
- W4385407859 cites W3127140329 @default.
- W4385407859 cites W3135832851 @default.
- W4385407859 cites W3153259367 @default.
- W4385407859 cites W3172105105 @default.
- W4385407859 cites W3175970094 @default.
- W4385407859 cites W3201373283 @default.
- W4385407859 cites W4200364660 @default.
- W4385407859 cites W4205569623 @default.
- W4385407859 cites W4210621572 @default.
- W4385407859 cites W4211035214 @default.
- W4385407859 cites W4226162659 @default.
- W4385407859 cites W4281649628 @default.
- W4385407859 cites W4282825639 @default.
- W4385407859 doi "https://doi.org/10.1016/j.cie.2023.109502" @default.
- W4385407859 hasPublicationYear "2023" @default.
- W4385407859 type Work @default.
- W4385407859 citedByCount "0" @default.
- W4385407859 crossrefType "journal-article" @default.
- W4385407859 hasAuthorship W4385407859A5017074061 @default.
- W4385407859 hasAuthorship W4385407859A5020120796 @default.
- W4385407859 hasAuthorship W4385407859A5030250813 @default.
- W4385407859 hasAuthorship W4385407859A5056102765 @default.
- W4385407859 hasAuthorship W4385407859A5074890736 @default.
- W4385407859 hasConcept C105795698 @default.
- W4385407859 hasConcept C11413529 @default.
- W4385407859 hasConcept C119857082 @default.
- W4385407859 hasConcept C121332964 @default.
- W4385407859 hasConcept C152745839 @default.
- W4385407859 hasConcept C154945302 @default.
- W4385407859 hasConcept C159877910 @default.
- W4385407859 hasConcept C161584116 @default.
- W4385407859 hasConcept C163716315 @default.
- W4385407859 hasConcept C172707124 @default.
- W4385407859 hasConcept C185142706 @default.
- W4385407859 hasConcept C203595873 @default.
- W4385407859 hasConcept C33923547 @default.
- W4385407859 hasConcept C41008148 @default.
- W4385407859 hasConcept C49937458 @default.
- W4385407859 hasConcept C61326573 @default.
- W4385407859 hasConcept C62520636 @default.
- W4385407859 hasConceptScore W4385407859C105795698 @default.
- W4385407859 hasConceptScore W4385407859C11413529 @default.
- W4385407859 hasConceptScore W4385407859C119857082 @default.
- W4385407859 hasConceptScore W4385407859C121332964 @default.
- W4385407859 hasConceptScore W4385407859C152745839 @default.
- W4385407859 hasConceptScore W4385407859C154945302 @default.
- W4385407859 hasConceptScore W4385407859C159877910 @default.
- W4385407859 hasConceptScore W4385407859C161584116 @default.
- W4385407859 hasConceptScore W4385407859C163716315 @default.
- W4385407859 hasConceptScore W4385407859C172707124 @default.
- W4385407859 hasConceptScore W4385407859C185142706 @default.
- W4385407859 hasConceptScore W4385407859C203595873 @default.
- W4385407859 hasConceptScore W4385407859C33923547 @default.
- W4385407859 hasConceptScore W4385407859C41008148 @default.
- W4385407859 hasConceptScore W4385407859C49937458 @default.
- W4385407859 hasConceptScore W4385407859C61326573 @default.
- W4385407859 hasConceptScore W4385407859C62520636 @default.
- W4385407859 hasFunder F4320335777 @default.
- W4385407859 hasLocation W43854078591 @default.
- W4385407859 hasOpenAccess W4385407859 @default.
- W4385407859 hasPrimaryLocation W43854078591 @default.
- W4385407859 hasRelatedWork W1977880579 @default.
- W4385407859 hasRelatedWork W2107535513 @default.
- W4385407859 hasRelatedWork W2112845346 @default.
- W4385407859 hasRelatedWork W2145556071 @default.