Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385408061> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4385408061 abstract "Lung cancer is currently one of the malignant tumors that poses the biggest threat to health and life, as both its morbidity and death are increasing globally. The deep learning model has limited impact on the supplementary diagnostic accuracy of common medical samples when the morphological traits are unclear. More spectrum information may be found in the intracellular fluorescent fingerprint data from hyperspectral imaging, creating a novel sample type for tasks involving lung cancer categorization. This study examines the classification challenge of benign and malignant lung cancer using a variety of deep learning models. According to the experimental findings, hyperspectral fluorescence pictures may more clearly distinguish between benign and malignant lung cancer features. In one-dimensional data samples, convolutional neural networks perform better than random forests, but in two-dimensional data samples, they perform worse than residual network models. The 50-layer residual network model, with an accuracy of 0.98, has the greatest classification performance among the three deep residual network models. Hyperspectral fluorescence pictures have been proven to have improved outcomes in the detection of benign and malignant lung cancer through the research, which can better suit clinical needs and aid physicians in making clinical judgments." @default.
- W4385408061 created "2023-08-01" @default.
- W4385408061 creator A5004613692 @default.
- W4385408061 creator A5016518645 @default.
- W4385408061 creator A5021955910 @default.
- W4385408061 creator A5024503988 @default.
- W4385408061 creator A5026634211 @default.
- W4385408061 creator A5056719999 @default.
- W4385408061 creator A5092779055 @default.
- W4385408061 date "2023-08-01" @default.
- W4385408061 modified "2023-10-02" @default.
- W4385408061 title "Hyperspectral imaging: a new method for diagnosing benign and malignant lung cancer" @default.
- W4385408061 cites W1510754805 @default.
- W4385408061 cites W1964940342 @default.
- W4385408061 cites W2117539524 @default.
- W4385408061 cites W3020996329 @default.
- W4385408061 cites W3021686598 @default.
- W4385408061 cites W3026646233 @default.
- W4385408061 cites W3121831259 @default.
- W4385408061 cites W3130349931 @default.
- W4385408061 cites W3136021864 @default.
- W4385408061 cites W3139035865 @default.
- W4385408061 doi "https://doi.org/10.1117/12.2689178" @default.
- W4385408061 hasPublicationYear "2023" @default.
- W4385408061 type Work @default.
- W4385408061 citedByCount "0" @default.
- W4385408061 crossrefType "proceedings-article" @default.
- W4385408061 hasAuthorship W4385408061A5004613692 @default.
- W4385408061 hasAuthorship W4385408061A5016518645 @default.
- W4385408061 hasAuthorship W4385408061A5021955910 @default.
- W4385408061 hasAuthorship W4385408061A5024503988 @default.
- W4385408061 hasAuthorship W4385408061A5026634211 @default.
- W4385408061 hasAuthorship W4385408061A5056719999 @default.
- W4385408061 hasAuthorship W4385408061A5092779055 @default.
- W4385408061 hasConcept C108583219 @default.
- W4385408061 hasConcept C11413529 @default.
- W4385408061 hasConcept C121608353 @default.
- W4385408061 hasConcept C126322002 @default.
- W4385408061 hasConcept C126838900 @default.
- W4385408061 hasConcept C142724271 @default.
- W4385408061 hasConcept C153180895 @default.
- W4385408061 hasConcept C154945302 @default.
- W4385408061 hasConcept C155512373 @default.
- W4385408061 hasConcept C159078339 @default.
- W4385408061 hasConcept C2776256026 @default.
- W4385408061 hasConcept C41008148 @default.
- W4385408061 hasConcept C71924100 @default.
- W4385408061 hasConcept C81363708 @default.
- W4385408061 hasConcept C94124525 @default.
- W4385408061 hasConceptScore W4385408061C108583219 @default.
- W4385408061 hasConceptScore W4385408061C11413529 @default.
- W4385408061 hasConceptScore W4385408061C121608353 @default.
- W4385408061 hasConceptScore W4385408061C126322002 @default.
- W4385408061 hasConceptScore W4385408061C126838900 @default.
- W4385408061 hasConceptScore W4385408061C142724271 @default.
- W4385408061 hasConceptScore W4385408061C153180895 @default.
- W4385408061 hasConceptScore W4385408061C154945302 @default.
- W4385408061 hasConceptScore W4385408061C155512373 @default.
- W4385408061 hasConceptScore W4385408061C159078339 @default.
- W4385408061 hasConceptScore W4385408061C2776256026 @default.
- W4385408061 hasConceptScore W4385408061C41008148 @default.
- W4385408061 hasConceptScore W4385408061C71924100 @default.
- W4385408061 hasConceptScore W4385408061C81363708 @default.
- W4385408061 hasConceptScore W4385408061C94124525 @default.
- W4385408061 hasLocation W43854080611 @default.
- W4385408061 hasOpenAccess W4385408061 @default.
- W4385408061 hasPrimaryLocation W43854080611 @default.
- W4385408061 hasRelatedWork W2425127026 @default.
- W4385408061 hasRelatedWork W2731899572 @default.
- W4385408061 hasRelatedWork W2782645198 @default.
- W4385408061 hasRelatedWork W2999805992 @default.
- W4385408061 hasRelatedWork W3116150086 @default.
- W4385408061 hasRelatedWork W3133861977 @default.
- W4385408061 hasRelatedWork W4200173597 @default.
- W4385408061 hasRelatedWork W4312417841 @default.
- W4385408061 hasRelatedWork W4321369474 @default.
- W4385408061 hasRelatedWork W4384103574 @default.
- W4385408061 isParatext "false" @default.
- W4385408061 isRetracted "false" @default.
- W4385408061 workType "article" @default.