Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385411209> ?p ?o ?g. }
- W4385411209 endingPage "7069" @default.
- W4385411209 startingPage "7054" @default.
- W4385411209 abstract "In this work, we extend an approach to coarse-grained (CG) modeling for polymer melts in which the conservative potential is parametrized using the iterative Boltzmann inversion (IBI) method and the accelerated dynamics inherent to IBI are corrected using the dissipative Langevin thermostat with a single tunable friction parameter (J. Chem. Phys. 2021, 154, 084114). Diffusive measures from picoseconds to nanoseconds are used to determine the Langevin friction factor to apply to the CG model to recover all-atom (AA) dynamics; the resulting friction factors are then compared for consistency. Here, we additionally parametrize the CG dynamics using a material property, the zero-shear viscosity, which we measure using the Green–Kubo (GK) method. Two materials are studied, squalane as a function of temperature and the same polystyrene oligomers previously studied as a function of chain length. For squalane, the friction derived from the long-time diffusive measures and the viscosity all strongly increase with decreasing temperature, showing an Arrhenius-like dependence, and remain consistent with each other over the entire temperature range. In contrast, the friction required for the picosecond diffusive measurement, the Debye–Waller factor, is somewhat lower than the friction from long-time measures and relatively insensitive to temperature. A time-dependent friction would be required to exactly reproduce the AA measurements during the caging transition connecting these two extremes over the entire timespan at this level of coarse-graining. For the polystyrene oligomers for which we previously characterized the diffusive friction, the viscosity-parametrized frictions are consistent with the diffusive measures for the smallest chain length. However, for the longer chains, we find different trends based on measurement method with friction derived from rotational diffusion remaining nearly constant, friction derived from translational diffusion showing a modestly increasing trend, and viscosity-derived friction showing a modest decreasing trend. This seems to indicate that there is some sensitivity of the friction measurement method for systems with increased relaxation times and that in particular, the unsteady dynamics of the individual parametrization schemes plays a role in this. Increased difficulty in applying the GK method with increasing relaxation time of the longer chain systems is also discussed. Overall, we find that when the material is in a high-temperature melt state and the viscosity measurement is reliable, the friction parametrization from the diffusive friction measures is consistent and the lower cost diffusive parametrization is a reliable means for modeling viscosity. Our data give insight into the time-dependent friction one might compute using a non-Markovian approach to enable the recovery of AA dynamics over a wider range of time scales than can be computed using a single friction." @default.
- W4385411209 created "2023-08-01" @default.
- W4385411209 creator A5038855473 @default.
- W4385411209 creator A5085977300 @default.
- W4385411209 date "2023-07-31" @default.
- W4385411209 modified "2023-09-27" @default.
- W4385411209 title "Comparison of Friction Parametrization from Dynamics and Material Properties for a Coarse-Grained Polymer Melt" @default.
- W4385411209 cites W1528590971 @default.
- W4385411209 cites W1971813690 @default.
- W4385411209 cites W1973447392 @default.
- W4385411209 cites W1976792214 @default.
- W4385411209 cites W1979130283 @default.
- W4385411209 cites W1981047697 @default.
- W4385411209 cites W1981560107 @default.
- W4385411209 cites W1983639022 @default.
- W4385411209 cites W1986167170 @default.
- W4385411209 cites W1992191950 @default.
- W4385411209 cites W1999928247 @default.
- W4385411209 cites W2000995214 @default.
- W4385411209 cites W2004155671 @default.
- W4385411209 cites W2004369921 @default.
- W4385411209 cites W2006114000 @default.
- W4385411209 cites W2008517160 @default.
- W4385411209 cites W2011110408 @default.
- W4385411209 cites W2029667189 @default.
- W4385411209 cites W2030031827 @default.
- W4385411209 cites W2036479410 @default.
- W4385411209 cites W2039529522 @default.
- W4385411209 cites W2043701535 @default.
- W4385411209 cites W2044143379 @default.
- W4385411209 cites W2044714636 @default.
- W4385411209 cites W2049092740 @default.
- W4385411209 cites W2050965815 @default.
- W4385411209 cites W2051067820 @default.
- W4385411209 cites W2054164533 @default.
- W4385411209 cites W2054753362 @default.
- W4385411209 cites W2055522365 @default.
- W4385411209 cites W2059570446 @default.
- W4385411209 cites W2060477203 @default.
- W4385411209 cites W2060684243 @default.
- W4385411209 cites W2061768183 @default.
- W4385411209 cites W2063609268 @default.
- W4385411209 cites W2064095328 @default.
- W4385411209 cites W2065440651 @default.
- W4385411209 cites W2070529599 @default.
- W4385411209 cites W2079153216 @default.
- W4385411209 cites W2083343428 @default.
- W4385411209 cites W2084333107 @default.
- W4385411209 cites W2087719762 @default.
- W4385411209 cites W2091991499 @default.
- W4385411209 cites W2093806300 @default.
- W4385411209 cites W2093979176 @default.
- W4385411209 cites W2098338793 @default.
- W4385411209 cites W2107145245 @default.
- W4385411209 cites W2110723170 @default.
- W4385411209 cites W2122199548 @default.
- W4385411209 cites W2131866773 @default.
- W4385411209 cites W2159565091 @default.
- W4385411209 cites W2164092622 @default.
- W4385411209 cites W2328490316 @default.
- W4385411209 cites W2332983522 @default.
- W4385411209 cites W2401028949 @default.
- W4385411209 cites W2412615290 @default.
- W4385411209 cites W2539031939 @default.
- W4385411209 cites W2570315967 @default.
- W4385411209 cites W2570438134 @default.
- W4385411209 cites W2600954944 @default.
- W4385411209 cites W2735765309 @default.
- W4385411209 cites W2746585542 @default.
- W4385411209 cites W2766792824 @default.
- W4385411209 cites W2794170121 @default.
- W4385411209 cites W2803084021 @default.
- W4385411209 cites W2906626571 @default.
- W4385411209 cites W2921271821 @default.
- W4385411209 cites W2937468399 @default.
- W4385411209 cites W2963838606 @default.
- W4385411209 cites W3021128674 @default.
- W4385411209 cites W3021947507 @default.
- W4385411209 cites W3103448972 @default.
- W4385411209 cites W3103948756 @default.
- W4385411209 cites W3121643930 @default.
- W4385411209 cites W3130412579 @default.
- W4385411209 cites W3163810976 @default.
- W4385411209 cites W3201073812 @default.
- W4385411209 cites W4224066162 @default.
- W4385411209 cites W4233850014 @default.
- W4385411209 cites W4242947092 @default.
- W4385411209 cites W4292103402 @default.
- W4385411209 cites W4308943751 @default.
- W4385411209 doi "https://doi.org/10.1021/acs.jpcb.3c03273" @default.
- W4385411209 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37523783" @default.
- W4385411209 hasPublicationYear "2023" @default.
- W4385411209 type Work @default.
- W4385411209 citedByCount "0" @default.
- W4385411209 crossrefType "journal-article" @default.
- W4385411209 hasAuthorship W4385411209A5038855473 @default.
- W4385411209 hasAuthorship W4385411209A5085977300 @default.
- W4385411209 hasConcept C115260700 @default.