Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385412829> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4385412829 abstract "Objectives: The multicenter anterior cruciate ligament reconstruction study (MARS) Group has implicated several factors that influence revision anterior cruciate ligament (rACLR) outcomes. As machine learning (ML) becomes increasingly utilized in the orthopaedic literature, the application of ML methodology to MARS cohort data presents a valuable opportunity to translate data into patient-specific insights. This study sought to apply novel ML methodology to the MARS cohort data in order to determine 1) an optimal predictive model of rACLR graft failure and 2) features that are most predictive of rACLR graft failure in context of the predictive model. Methods: The MARS Group of 83 surgeons and 52 sites prospectively enrolled a cohort of patients undergoing rACLR. Patients were followed up at 2 and 6 years postoperatively regarding patient-reported outcomes (PROs), additional surgeries, and incidence of graft failure. Surgeon reported intraoperative findings and preoperative radiographic measures were obtained. Data was preprocessed and 381 demographic, clinical, and surgical features were used to build five machine learning models predictive of graft failure at 6 years postoperatively. Models used included traditional logistic regression (LR), XGBoost, Gradient Boosting, Random Forest, and a validated ensemble algorithm, AutoPrognosis (AP). Validated performance metrics for binary outcome prediction models were used to determine discriminative power and calibration. Individual feature importance was calculated for the highest performing models using partial dependence and perturbation-based feature importance. Results: The cohort included 831 patients who completed six year follow up, and 5.8% (n=48) of whom experienced graft failure. While all models had moderate to good concordance, AP demonstrated the highest discriminative power compared to other models (Model: AUROC | AP: 0.722 | Random Forest: 0.621 | Gradient Boosting: 0.654 | XGBoost: 0.690 | Logistic Regression: 0.630). The AP model was well-calibrated, with calibration scores similar to the other studied models (Model: Brier Score | AP: 0.054 | Random Forest: 0.054 | Gradient Boosting: 0.059 | XGBoost: 0.059 | Logistic Regression: 0.102). Features deemed important for AP differ from those for LR model performance. For AP, partial dependence feature importance calculations demonstrated the following top five contributors to model predictive ability: surgeon years of experience, prior femoral tunnel position measured via preoperative radiograph, compromised prior ACLR femoral tunnel position and size, and baseline patient age. Similarly, AP perturbation-based calculations showed the following top five features that contribute most to the AUROC performance: baseline patient age, current ACLR graft type, years since previous ACLR, prior ACLR femoral tunnel position, and prior tibial tunnel position on sagittal view preoperative radiographs. Perturbation-based calculations showed the following top five features that contribute most to the AUPRC performance: current ACLR graft type, baseline patient age, prior tibial tunnel position on sagittal view preoperative radiographs, previous ipsilateral medial meniscus repair, and baseline SF-36 subscale scores for patient vitality. Other leading contributors to model predictive ability included baseline PROs including SF-36 subscale scores for physical function, mental health and composite mental health, KOOS quality of life, WOMAC pain, and MARX activity rating scores. Conclusions: Of the studied models in this preliminary analysis, AP appears to most accurately predict rACLR graft failure. These findings build on prior studies, identifying key surgical, clinical, radiographic, and patient-reported factors contributing to the model’s ability to predict rACLR graft failure at 6 years postoperatively. Further work includes creation of a clinical risk calculator using important feature inputs, and the use of survival modeling to determine risk scores at various postoperative time points." @default.
- W4385412829 created "2023-08-01" @default.
- W4385412829 creator A5067377201 @default.
- W4385412829 date "2023-07-01" @default.
- W4385412829 modified "2023-10-16" @default.
- W4385412829 title "Paper 42: A Novel Machine Learning (ML) Algorithm to Predict Outcomes after Revision ACLR (rACLR) in the Multicenter Anterior Cruciate Ligament Reconstruction Study (MARS) Cohort" @default.
- W4385412829 doi "https://doi.org/10.1177/2325967123s00068" @default.
- W4385412829 hasPublicationYear "2023" @default.
- W4385412829 type Work @default.
- W4385412829 citedByCount "0" @default.
- W4385412829 crossrefType "journal-article" @default.
- W4385412829 hasAuthorship W4385412829A5067377201 @default.
- W4385412829 hasBestOaLocation W43854128291 @default.
- W4385412829 hasConcept C119857082 @default.
- W4385412829 hasConcept C126322002 @default.
- W4385412829 hasConcept C141071460 @default.
- W4385412829 hasConcept C151730666 @default.
- W4385412829 hasConcept C151956035 @default.
- W4385412829 hasConcept C154945302 @default.
- W4385412829 hasConcept C160798450 @default.
- W4385412829 hasConcept C169258074 @default.
- W4385412829 hasConcept C201903717 @default.
- W4385412829 hasConcept C2778434673 @default.
- W4385412829 hasConcept C2779343474 @default.
- W4385412829 hasConcept C2780887989 @default.
- W4385412829 hasConcept C41008148 @default.
- W4385412829 hasConcept C71924100 @default.
- W4385412829 hasConcept C72563966 @default.
- W4385412829 hasConcept C86803240 @default.
- W4385412829 hasConcept C97931131 @default.
- W4385412829 hasConceptScore W4385412829C119857082 @default.
- W4385412829 hasConceptScore W4385412829C126322002 @default.
- W4385412829 hasConceptScore W4385412829C141071460 @default.
- W4385412829 hasConceptScore W4385412829C151730666 @default.
- W4385412829 hasConceptScore W4385412829C151956035 @default.
- W4385412829 hasConceptScore W4385412829C154945302 @default.
- W4385412829 hasConceptScore W4385412829C160798450 @default.
- W4385412829 hasConceptScore W4385412829C169258074 @default.
- W4385412829 hasConceptScore W4385412829C201903717 @default.
- W4385412829 hasConceptScore W4385412829C2778434673 @default.
- W4385412829 hasConceptScore W4385412829C2779343474 @default.
- W4385412829 hasConceptScore W4385412829C2780887989 @default.
- W4385412829 hasConceptScore W4385412829C41008148 @default.
- W4385412829 hasConceptScore W4385412829C71924100 @default.
- W4385412829 hasConceptScore W4385412829C72563966 @default.
- W4385412829 hasConceptScore W4385412829C86803240 @default.
- W4385412829 hasConceptScore W4385412829C97931131 @default.
- W4385412829 hasIssue "7_suppl3" @default.
- W4385412829 hasLocation W43854128291 @default.
- W4385412829 hasOpenAccess W4385412829 @default.
- W4385412829 hasPrimaryLocation W43854128291 @default.
- W4385412829 hasRelatedWork W2911455822 @default.
- W4385412829 hasRelatedWork W3174196512 @default.
- W4385412829 hasRelatedWork W3198710639 @default.
- W4385412829 hasRelatedWork W4212963941 @default.
- W4385412829 hasRelatedWork W4239706975 @default.
- W4385412829 hasRelatedWork W4283313480 @default.
- W4385412829 hasRelatedWork W4285237370 @default.
- W4385412829 hasRelatedWork W4308191010 @default.
- W4385412829 hasRelatedWork W4321636153 @default.
- W4385412829 hasRelatedWork W4323021782 @default.
- W4385412829 hasVolume "11" @default.
- W4385412829 isParatext "false" @default.
- W4385412829 isRetracted "false" @default.
- W4385412829 workType "article" @default.