Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385414105> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4385414105 endingPage "148" @default.
- W4385414105 startingPage "135" @default.
- W4385414105 abstract "The efficacy of conventional classification systems is contingent upon the accurate representation of data and a substantial portion of the effort invested in feature engineering, which is a laborious and timeconsuming process requiring expert domain knowledge. In contrast, deep learning has the capacity to automatically identify and extract discriminative information from data without the need for manual feature creation by a domain expert. In particular, Convolutional Neural Networks (CNNs), a type of deep feedforward network, have garnered attention from researchers. This study conducts several preliminary experiments to classify breast cancer histopathology images using deep learning, given the small number and high resolution of training samples. The proposed approach is evaluated on the publicly available BreaKHis dataset, utilizing both a scratch model and transfer learning pre trained models. A comparison of the proposed scratch method to alternative techniques was carried out using a suite of performance evaluation metrics. The results indicate that the scratch model, with its independent magnification factor, achieved greater accuracy, with a binary classification accuracy of 99.5% and a multiclass classification accuracy of 96.1%." @default.
- W4385414105 created "2023-08-01" @default.
- W4385414105 creator A5057134227 @default.
- W4385414105 creator A5085989249 @default.
- W4385414105 creator A5086809571 @default.
- W4385414105 date "2023-01-01" @default.
- W4385414105 modified "2023-10-16" @default.
- W4385414105 title "Classifying Breast Cancer Using Deep Convolutional Neural Network Method" @default.
- W4385414105 cites W1972019498 @default.
- W4385414105 cites W2093030207 @default.
- W4385414105 cites W2194775991 @default.
- W4385414105 cites W2344480160 @default.
- W4385414105 cites W2547944663 @default.
- W4385414105 cites W2771292748 @default.
- W4385414105 cites W2801370692 @default.
- W4385414105 cites W2809254203 @default.
- W4385414105 cites W2911711268 @default.
- W4385414105 cites W2929968583 @default.
- W4385414105 cites W2963446712 @default.
- W4385414105 cites W2973410689 @default.
- W4385414105 cites W3003199121 @default.
- W4385414105 cites W3010074876 @default.
- W4385414105 cites W3020203706 @default.
- W4385414105 cites W3029717128 @default.
- W4385414105 cites W3048471978 @default.
- W4385414105 cites W3106717751 @default.
- W4385414105 cites W3138634112 @default.
- W4385414105 cites W4319299872 @default.
- W4385414105 doi "https://doi.org/10.1007/978-981-99-4914-4_11" @default.
- W4385414105 hasPublicationYear "2023" @default.
- W4385414105 type Work @default.
- W4385414105 citedByCount "0" @default.
- W4385414105 crossrefType "book-chapter" @default.
- W4385414105 hasAuthorship W4385414105A5057134227 @default.
- W4385414105 hasAuthorship W4385414105A5085989249 @default.
- W4385414105 hasAuthorship W4385414105A5086809571 @default.
- W4385414105 hasConcept C108583219 @default.
- W4385414105 hasConcept C119857082 @default.
- W4385414105 hasConcept C12267149 @default.
- W4385414105 hasConcept C134306372 @default.
- W4385414105 hasConcept C138885662 @default.
- W4385414105 hasConcept C150899416 @default.
- W4385414105 hasConcept C153180895 @default.
- W4385414105 hasConcept C154945302 @default.
- W4385414105 hasConcept C2776401178 @default.
- W4385414105 hasConcept C33923547 @default.
- W4385414105 hasConcept C36503486 @default.
- W4385414105 hasConcept C41008148 @default.
- W4385414105 hasConcept C41895202 @default.
- W4385414105 hasConcept C50644808 @default.
- W4385414105 hasConcept C66905080 @default.
- W4385414105 hasConcept C81363708 @default.
- W4385414105 hasConcept C97931131 @default.
- W4385414105 hasConceptScore W4385414105C108583219 @default.
- W4385414105 hasConceptScore W4385414105C119857082 @default.
- W4385414105 hasConceptScore W4385414105C12267149 @default.
- W4385414105 hasConceptScore W4385414105C134306372 @default.
- W4385414105 hasConceptScore W4385414105C138885662 @default.
- W4385414105 hasConceptScore W4385414105C150899416 @default.
- W4385414105 hasConceptScore W4385414105C153180895 @default.
- W4385414105 hasConceptScore W4385414105C154945302 @default.
- W4385414105 hasConceptScore W4385414105C2776401178 @default.
- W4385414105 hasConceptScore W4385414105C33923547 @default.
- W4385414105 hasConceptScore W4385414105C36503486 @default.
- W4385414105 hasConceptScore W4385414105C41008148 @default.
- W4385414105 hasConceptScore W4385414105C41895202 @default.
- W4385414105 hasConceptScore W4385414105C50644808 @default.
- W4385414105 hasConceptScore W4385414105C66905080 @default.
- W4385414105 hasConceptScore W4385414105C81363708 @default.
- W4385414105 hasConceptScore W4385414105C97931131 @default.
- W4385414105 hasLocation W43854141051 @default.
- W4385414105 hasOpenAccess W4385414105 @default.
- W4385414105 hasPrimaryLocation W43854141051 @default.
- W4385414105 hasRelatedWork W2970216048 @default.
- W4385414105 hasRelatedWork W2996856019 @default.
- W4385414105 hasRelatedWork W3018421652 @default.
- W4385414105 hasRelatedWork W3021430260 @default.
- W4385414105 hasRelatedWork W3091976719 @default.
- W4385414105 hasRelatedWork W3192840557 @default.
- W4385414105 hasRelatedWork W4220996320 @default.
- W4385414105 hasRelatedWork W4285149559 @default.
- W4385414105 hasRelatedWork W4312200629 @default.
- W4385414105 hasRelatedWork W4382286161 @default.
- W4385414105 isParatext "false" @default.
- W4385414105 isRetracted "false" @default.
- W4385414105 workType "book-chapter" @default.