Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385422056> ?p ?o ?g. }
- W4385422056 endingPage "1136" @default.
- W4385422056 startingPage "1136" @default.
- W4385422056 abstract "Accurate time series forecasting is of great importance in real-world scenarios such as health care, transportation, and finance. Because of the tendency, temporal variations, and periodicity of the time series data, there are complex and dynamic dependencies among its underlying features. In time series forecasting tasks, the features learned by a specific task at the current time step (such as predicting mortality) are related to the features of historical timesteps and the features of adjacent timesteps of related tasks (such as predicting fever). Therefore, capturing dynamic dependencies in data is a challenging problem for learning accurate future prediction behavior. To address this challenge, we propose a cross-timestep feature-sharing multi-task time series forecasting model that can capture global and local dynamic dependencies in time series data. Initially, the global dynamic dependencies of features within each task are captured through a self-attention mechanism. Furthermore, an adaptive sparse graph structure is employed to capture the local dynamic dependencies inherent in the data, which can explicitly depict the correlation between features across timesteps and tasks. Lastly, the cross-timestep feature sharing between tasks is achieved through a graph attention mechanism, which strengthens the learning of shared features that are strongly correlated with a single task. It is beneficial for improving the generalization performance of the model. Our experimental results demonstrate that our method is significantly competitive compared to baseline methods." @default.
- W4385422056 created "2023-08-01" @default.
- W4385422056 creator A5000432967 @default.
- W4385422056 creator A5004718770 @default.
- W4385422056 creator A5023487478 @default.
- W4385422056 creator A5037669752 @default.
- W4385422056 creator A5054192846 @default.
- W4385422056 creator A5061892970 @default.
- W4385422056 date "2023-07-28" @default.
- W4385422056 modified "2023-10-18" @default.
- W4385422056 title "Multi-Task Time Series Forecasting Based on Graph Neural Networks" @default.
- W4385422056 cites W2059980448 @default.
- W4385422056 cites W2064675550 @default.
- W4385422056 cites W2116341502 @default.
- W4385422056 cites W2149921893 @default.
- W4385422056 cites W2396881363 @default.
- W4385422056 cites W2477834368 @default.
- W4385422056 cites W2513134451 @default.
- W4385422056 cites W2613328025 @default.
- W4385422056 cites W2781582701 @default.
- W4385422056 cites W2788997482 @default.
- W4385422056 cites W2806031239 @default.
- W4385422056 cites W2809623940 @default.
- W4385422056 cites W2895979207 @default.
- W4385422056 cites W2901504064 @default.
- W4385422056 cites W2908670131 @default.
- W4385422056 cites W2932653301 @default.
- W4385422056 cites W2963532813 @default.
- W4385422056 cites W2964010366 @default.
- W4385422056 cites W2980994438 @default.
- W4385422056 cites W2988226917 @default.
- W4385422056 cites W2998409174 @default.
- W4385422056 cites W3022643593 @default.
- W4385422056 cites W3093873544 @default.
- W4385422056 cites W3101973032 @default.
- W4385422056 cites W3103720336 @default.
- W4385422056 cites W3123909522 @default.
- W4385422056 cites W3129957816 @default.
- W4385422056 cites W3171884590 @default.
- W4385422056 cites W3171958173 @default.
- W4385422056 cites W3175872245 @default.
- W4385422056 cites W3177318507 @default.
- W4385422056 cites W3198832112 @default.
- W4385422056 cites W3216185787 @default.
- W4385422056 cites W4207002203 @default.
- W4385422056 cites W4224232837 @default.
- W4385422056 cites W4225284516 @default.
- W4385422056 cites W4285325582 @default.
- W4385422056 cites W4306317074 @default.
- W4385422056 cites W4309026856 @default.
- W4385422056 cites W4312124153 @default.
- W4385422056 cites W4312734973 @default.
- W4385422056 cites W4318589291 @default.
- W4385422056 cites W4378084519 @default.
- W4385422056 cites W48012943 @default.
- W4385422056 doi "https://doi.org/10.3390/e25081136" @default.
- W4385422056 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37628166" @default.
- W4385422056 hasPublicationYear "2023" @default.
- W4385422056 type Work @default.
- W4385422056 citedByCount "0" @default.
- W4385422056 crossrefType "journal-article" @default.
- W4385422056 hasAuthorship W4385422056A5000432967 @default.
- W4385422056 hasAuthorship W4385422056A5004718770 @default.
- W4385422056 hasAuthorship W4385422056A5023487478 @default.
- W4385422056 hasAuthorship W4385422056A5037669752 @default.
- W4385422056 hasAuthorship W4385422056A5054192846 @default.
- W4385422056 hasAuthorship W4385422056A5061892970 @default.
- W4385422056 hasBestOaLocation W43854220561 @default.
- W4385422056 hasConcept C111368507 @default.
- W4385422056 hasConcept C119857082 @default.
- W4385422056 hasConcept C124101348 @default.
- W4385422056 hasConcept C12725497 @default.
- W4385422056 hasConcept C127313418 @default.
- W4385422056 hasConcept C132525143 @default.
- W4385422056 hasConcept C134306372 @default.
- W4385422056 hasConcept C138885662 @default.
- W4385422056 hasConcept C143724316 @default.
- W4385422056 hasConcept C151406439 @default.
- W4385422056 hasConcept C151730666 @default.
- W4385422056 hasConcept C154945302 @default.
- W4385422056 hasConcept C162324750 @default.
- W4385422056 hasConcept C177148314 @default.
- W4385422056 hasConcept C187736073 @default.
- W4385422056 hasConcept C2776401178 @default.
- W4385422056 hasConcept C2780451532 @default.
- W4385422056 hasConcept C33923547 @default.
- W4385422056 hasConcept C41008148 @default.
- W4385422056 hasConcept C41895202 @default.
- W4385422056 hasConcept C50644808 @default.
- W4385422056 hasConcept C80444323 @default.
- W4385422056 hasConcept C86803240 @default.
- W4385422056 hasConceptScore W4385422056C111368507 @default.
- W4385422056 hasConceptScore W4385422056C119857082 @default.
- W4385422056 hasConceptScore W4385422056C124101348 @default.
- W4385422056 hasConceptScore W4385422056C12725497 @default.
- W4385422056 hasConceptScore W4385422056C127313418 @default.
- W4385422056 hasConceptScore W4385422056C132525143 @default.
- W4385422056 hasConceptScore W4385422056C134306372 @default.