Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385423039> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4385423039 endingPage "1506" @default.
- W4385423039 startingPage "1506" @default.
- W4385423039 abstract "The Brinkman–Bénard convection problem is chosen for investigation, along with very general boundary conditions. Using the Maclaurin series, in this paper, we show that it is possible to perform a relatively exact linear stability analysis, as well as a weakly nonlinear stability analysis, as normally performed in the case of a classical free isothermal/free isothermal boundary combination. Starting from a classical linear stability analysis, we ultimately study the chaos in such systems, all conducted with great accuracy. The principle of exchange of stabilities is proven, and the critical Rayleigh number, Rac, and the wave number, ac, are obtained in closed form. An asymptotic analysis is performed, to obtain Rac for the case of adiabatic boundaries, for which ac≃0. A seemingly minimal representation yields a generalized Lorenz model for the general boundary condition used. The symmetry in the three Lorenz equations, their dissipative nature, energy-conserving nature, and bounded solution are observed for the considered general boundary condition. Thus, one may infer that, to obtain the results of various related problems, they can be handled in an integrated manner, and results can be obtained with great accuracy. The effect of increasing the values of the Biot numbers and/or slip Darcy numbers is to increase, not only the value of the critical Rayleigh number, but also the critical wave number. Extreme values of zero and infinity, when assigned to the Biot number, yield the results of an adiabatic and an isothermal boundary, respectively. Likewise, these extreme values assigned to the slip Darcy number yield the effects of free and rigid boundary conditions, respectively. Intermediate values of the Biot and slip Darcy numbers bridge the gap between the extreme cases. The effects of the Biot and slip Darcy numbers on the Hopf–Rayleigh number are, however, opposite to each other. In view of the known analogy between Bénard convection and Taylor–Couette flow in the linear regime, it is imperative that the results of the latter problem, viz., Brinkman–Taylor–Couette flow, become as well known." @default.
- W4385423039 created "2023-08-01" @default.
- W4385423039 creator A5054127441 @default.
- W4385423039 creator A5060248911 @default.
- W4385423039 creator A5084154522 @default.
- W4385423039 creator A5088426224 @default.
- W4385423039 date "2023-07-28" @default.
- W4385423039 modified "2023-10-16" @default.
- W4385423039 title "Brinkman–Bénard Convection with Rough Boundaries and Third-Type Thermal Boundary Conditions" @default.
- W4385423039 cites W1968756475 @default.
- W4385423039 cites W1972404450 @default.
- W4385423039 cites W1982962413 @default.
- W4385423039 cites W1992274274 @default.
- W4385423039 cites W1995359042 @default.
- W4385423039 cites W2007229193 @default.
- W4385423039 cites W2008653768 @default.
- W4385423039 cites W2053518762 @default.
- W4385423039 cites W2062220441 @default.
- W4385423039 cites W2076380774 @default.
- W4385423039 cites W2082072102 @default.
- W4385423039 cites W2083462549 @default.
- W4385423039 cites W2084055475 @default.
- W4385423039 cites W2099150268 @default.
- W4385423039 cites W2114429328 @default.
- W4385423039 cites W2128999834 @default.
- W4385423039 cites W2141394518 @default.
- W4385423039 cites W2333463275 @default.
- W4385423039 cites W2477107297 @default.
- W4385423039 cites W2499859702 @default.
- W4385423039 cites W2607483978 @default.
- W4385423039 cites W2612510209 @default.
- W4385423039 cites W2756905979 @default.
- W4385423039 cites W3026264759 @default.
- W4385423039 cites W3029365746 @default.
- W4385423039 cites W3040957360 @default.
- W4385423039 cites W307257233 @default.
- W4385423039 cites W4205533230 @default.
- W4385423039 cites W4231102510 @default.
- W4385423039 cites W4292166801 @default.
- W4385423039 cites W4293238869 @default.
- W4385423039 cites W4319296732 @default.
- W4385423039 cites W4379043734 @default.
- W4385423039 cites W578873399 @default.
- W4385423039 doi "https://doi.org/10.3390/sym15081506" @default.
- W4385423039 hasPublicationYear "2023" @default.
- W4385423039 type Work @default.
- W4385423039 citedByCount "0" @default.
- W4385423039 crossrefType "journal-article" @default.
- W4385423039 hasAuthorship W4385423039A5054127441 @default.
- W4385423039 hasAuthorship W4385423039A5060248911 @default.
- W4385423039 hasAuthorship W4385423039A5084154522 @default.
- W4385423039 hasAuthorship W4385423039A5088426224 @default.
- W4385423039 hasBestOaLocation W43854230391 @default.
- W4385423039 hasConcept C109663097 @default.
- W4385423039 hasConcept C115341296 @default.
- W4385423039 hasConcept C121332964 @default.
- W4385423039 hasConcept C134306372 @default.
- W4385423039 hasConcept C135402231 @default.
- W4385423039 hasConcept C158622935 @default.
- W4385423039 hasConcept C182310444 @default.
- W4385423039 hasConcept C33923547 @default.
- W4385423039 hasConcept C57879066 @default.
- W4385423039 hasConcept C62354387 @default.
- W4385423039 hasConcept C62520636 @default.
- W4385423039 hasConcept C97355855 @default.
- W4385423039 hasConceptScore W4385423039C109663097 @default.
- W4385423039 hasConceptScore W4385423039C115341296 @default.
- W4385423039 hasConceptScore W4385423039C121332964 @default.
- W4385423039 hasConceptScore W4385423039C134306372 @default.
- W4385423039 hasConceptScore W4385423039C135402231 @default.
- W4385423039 hasConceptScore W4385423039C158622935 @default.
- W4385423039 hasConceptScore W4385423039C182310444 @default.
- W4385423039 hasConceptScore W4385423039C33923547 @default.
- W4385423039 hasConceptScore W4385423039C57879066 @default.
- W4385423039 hasConceptScore W4385423039C62354387 @default.
- W4385423039 hasConceptScore W4385423039C62520636 @default.
- W4385423039 hasConceptScore W4385423039C97355855 @default.
- W4385423039 hasIssue "8" @default.
- W4385423039 hasLocation W43854230391 @default.
- W4385423039 hasOpenAccess W4385423039 @default.
- W4385423039 hasPrimaryLocation W43854230391 @default.
- W4385423039 hasRelatedWork W1556508989 @default.
- W4385423039 hasRelatedWork W2006702530 @default.
- W4385423039 hasRelatedWork W2051365595 @default.
- W4385423039 hasRelatedWork W2059423455 @default.
- W4385423039 hasRelatedWork W2094931821 @default.
- W4385423039 hasRelatedWork W2304950393 @default.
- W4385423039 hasRelatedWork W2364223523 @default.
- W4385423039 hasRelatedWork W2951215589 @default.
- W4385423039 hasRelatedWork W4206452777 @default.
- W4385423039 hasRelatedWork W4288944437 @default.
- W4385423039 hasVolume "15" @default.
- W4385423039 isParatext "false" @default.
- W4385423039 isRetracted "false" @default.
- W4385423039 workType "article" @default.