Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385425251> ?p ?o ?g. }
- W4385425251 endingPage "26" @default.
- W4385425251 startingPage "1" @default.
- W4385425251 abstract "ABSTRACTNitrogen is an essential nutrient element for the growth of citrus tree. The accurate estimation of leaf nitrogen content (LNC) is important to guarantee fruit quality and yield. The unmanned aerial vehicle (UAV) remote sensing has shown great potential for monitoring the LNC of crops. However, the number of training samples is always limited due to the high cost and time consumption of acquiring LNC samples. Obtaining satisfactory results is difficult for most machine-learning models with insufficient samples. Thus, a semi-supervised regression model is designed in this paper to improve the performance of estimating citrus LNC from UAV images under the condition of small samples. First, the local binary pattern (LBP) operator is employed to fully extract textural features in UAV images. Second, semi-supervised cooperative regression models based on ridge regression (Ridge), support vector regression (SVR), and random forest (RF) are constructed by combining spectral and textural features. Finally, the best learning model is used to realize the accurate limited sample LNC estimation from the available training samples. The experiments confirm that the semi-supervised cooperative regression model has better and promising results than other machine-learning methods under the condition of small samples. The RF-based cooperative regression model (CoRF) performs best among other models, with a determination coefficient (R2) of 0.716 and a root mean square error (RMSE) of 0.620 g·kg−1. The CoRF model also achieves superior performance when combining LBP textural features. The results estimated by the semi-supervised cooperative regression model is capable of providing instructions for the production and management of citrus orchard.KEYWORDS: Citrusleaf nitrogen contentUAV remote sensingsemi-supervised regressionmachine learning Highlights A semi-supervised cooperative regression model is designed to accurately estimate the LNC of citrus orchard under the condition of small samples.The local binary pattern (LBP) operator is employed to fully extract textural features in UAV images.Combining the spectral and LBP textural features successfully to achieve superior performances of LNC estimation.AcknowledgementsWe sincerely thank the technical staff of orchard for their support and help in data collection; and other members of the Plateau characteristic agriculture project.Disclosure statementNo potential conflict of interest was reported by the author(s).Author contributionsTong Wu conceived and designed the experiment; Yong Li revised and improved the manuscript; Ying Ge provided supervision on implementation of the research; Shunzhong Xi, Tingxuan Zhang, and Wusiqin Zhang analysed the data.Data availability statementThe data supporting the findings of this study are available from the corresponding author upon reasonable request.Additional informationFundingThis research was funded by the National Natural Science Foundation of China (Grant No. 41977394); the Major Project of Science and Technology of Yunnan Province (Grant No. 202002AE090010)." @default.
- W4385425251 created "2023-08-01" @default.
- W4385425251 creator A5023214008 @default.
- W4385425251 creator A5026162425 @default.
- W4385425251 creator A5058311352 @default.
- W4385425251 creator A5064780892 @default.
- W4385425251 creator A5077939359 @default.
- W4385425251 creator A5089466387 @default.
- W4385425251 date "2023-07-31" @default.
- W4385425251 modified "2023-10-18" @default.
- W4385425251 title "Semi-supervised cooperative regression model for small sample estimation of citrus leaf nitrogen content with UAV images" @default.
- W4385425251 cites W1973273412 @default.
- W4385425251 cites W1978815957 @default.
- W4385425251 cites W1985636418 @default.
- W4385425251 cites W1987216676 @default.
- W4385425251 cites W2019919981 @default.
- W4385425251 cites W2039051707 @default.
- W4385425251 cites W2039604550 @default.
- W4385425251 cites W2041777957 @default.
- W4385425251 cites W2044774029 @default.
- W4385425251 cites W2051841502 @default.
- W4385425251 cites W2054010562 @default.
- W4385425251 cites W2056352756 @default.
- W4385425251 cites W2060650801 @default.
- W4385425251 cites W2063837453 @default.
- W4385425251 cites W2074464158 @default.
- W4385425251 cites W2125230412 @default.
- W4385425251 cites W2129483042 @default.
- W4385425251 cites W2154877881 @default.
- W4385425251 cites W2158755893 @default.
- W4385425251 cites W2163352848 @default.
- W4385425251 cites W2167460663 @default.
- W4385425251 cites W2265726891 @default.
- W4385425251 cites W2282242249 @default.
- W4385425251 cites W2621112468 @default.
- W4385425251 cites W2714640284 @default.
- W4385425251 cites W2774550616 @default.
- W4385425251 cites W2790197537 @default.
- W4385425251 cites W2808462996 @default.
- W4385425251 cites W2811058982 @default.
- W4385425251 cites W2884040439 @default.
- W4385425251 cites W2891621712 @default.
- W4385425251 cites W2900436152 @default.
- W4385425251 cites W2901298109 @default.
- W4385425251 cites W2920653747 @default.
- W4385425251 cites W2946133329 @default.
- W4385425251 cites W2978860639 @default.
- W4385425251 cites W2992086439 @default.
- W4385425251 cites W2999345012 @default.
- W4385425251 cites W3033909547 @default.
- W4385425251 cites W3038986268 @default.
- W4385425251 cites W3043958968 @default.
- W4385425251 cites W3087820372 @default.
- W4385425251 cites W3098372638 @default.
- W4385425251 cites W3105771930 @default.
- W4385425251 cites W3112929969 @default.
- W4385425251 cites W3118625667 @default.
- W4385425251 cites W3119385233 @default.
- W4385425251 cites W3121736343 @default.
- W4385425251 cites W3128511351 @default.
- W4385425251 cites W3131388666 @default.
- W4385425251 cites W3133005711 @default.
- W4385425251 cites W3134815509 @default.
- W4385425251 cites W3135396474 @default.
- W4385425251 cites W3136172475 @default.
- W4385425251 cites W3184521599 @default.
- W4385425251 cites W3188486296 @default.
- W4385425251 cites W3199734454 @default.
- W4385425251 cites W3207723747 @default.
- W4385425251 cites W3207910868 @default.
- W4385425251 cites W4200406763 @default.
- W4385425251 cites W4200422036 @default.
- W4385425251 cites W4205524645 @default.
- W4385425251 cites W4224083597 @default.
- W4385425251 cites W4313828103 @default.
- W4385425251 doi "https://doi.org/10.1080/01431161.2023.2240027" @default.
- W4385425251 hasPublicationYear "2023" @default.
- W4385425251 type Work @default.
- W4385425251 citedByCount "0" @default.
- W4385425251 crossrefType "journal-article" @default.
- W4385425251 hasAuthorship W4385425251A5023214008 @default.
- W4385425251 hasAuthorship W4385425251A5026162425 @default.
- W4385425251 hasAuthorship W4385425251A5058311352 @default.
- W4385425251 hasAuthorship W4385425251A5064780892 @default.
- W4385425251 hasAuthorship W4385425251A5077939359 @default.
- W4385425251 hasAuthorship W4385425251A5089466387 @default.
- W4385425251 hasConcept C105795698 @default.
- W4385425251 hasConcept C119857082 @default.
- W4385425251 hasConcept C12267149 @default.
- W4385425251 hasConcept C136389625 @default.
- W4385425251 hasConcept C139945424 @default.
- W4385425251 hasConcept C152877465 @default.
- W4385425251 hasConcept C153180895 @default.
- W4385425251 hasConcept C154945302 @default.
- W4385425251 hasConcept C169258074 @default.
- W4385425251 hasConcept C185592680 @default.
- W4385425251 hasConcept C198531522 @default.
- W4385425251 hasConcept C33923547 @default.