Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385428254> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4385428254 endingPage "750" @default.
- W4385428254 startingPage "741" @default.
- W4385428254 abstract "AbstractPrincipal component analysis (PCA) has been a commonly used unsupervised learning method with broad applications in both descriptive and inferential analytics. It is widely used for representation learning to extract key features from a dataset and visualize them in a lower dimensional space. With more applications of neural network-based methods, autoencoders (AEs) have gained popularity for dimensionality reduction tasks. In this paper, we explore the intriguing relationship between PCA and AEs and demonstrate, through some examples, how these two approaches yield similar results in the case of the so-called linear AEs (LAEs). This study provides insights into the evolving landscape of unsupervised learning and highlights the relevance of both PCA and AEs in modern data analysis.Keywords: Autoencodersdeep learningdimensionality reductionprincipal component analysisunsupervised learning Notes1 The code used to generate the results is available at: https://github.com/dcacciarelli/pca-vs-autoencodersAdditional informationNotes on contributorsDavide CacciarelliDavide Cacciarelli is a PhD student at the Technical University of Denmark and Norwegian University of Science and Technology. His research is related to active learning and statistical process monitoring.Murat KulahciMurat Kulahci is a professor at the Technical University of Denmark and Luleå University of Technology in Sweden. His research currently focuses primarily on large data analytics for descriptive, inferential and predictive purposes. Many of his research applications involve high dimensional, high frequency data demanding analysis methods in chemometrics and machine learning. He has been collaborating with various industries in many industrial statistics projects and digital manufacturing." @default.
- W4385428254 created "2023-08-01" @default.
- W4385428254 creator A5039180167 @default.
- W4385428254 creator A5044826085 @default.
- W4385428254 date "2023-07-31" @default.
- W4385428254 modified "2023-10-18" @default.
- W4385428254 title "Hidden dimensions of the data: PCA vs autoencoders" @default.
- W4385428254 cites W1965669468 @default.
- W4385428254 cites W2004026774 @default.
- W4385428254 cites W2088762139 @default.
- W4385428254 cites W2161380408 @default.
- W4385428254 cites W2608089442 @default.
- W4385428254 cites W2944603198 @default.
- W4385428254 cites W3047652824 @default.
- W4385428254 cites W3120026198 @default.
- W4385428254 cites W3173369353 @default.
- W4385428254 cites W4281298147 @default.
- W4385428254 cites W4292933682 @default.
- W4385428254 doi "https://doi.org/10.1080/08982112.2023.2231064" @default.
- W4385428254 hasPublicationYear "2023" @default.
- W4385428254 type Work @default.
- W4385428254 citedByCount "0" @default.
- W4385428254 crossrefType "journal-article" @default.
- W4385428254 hasAuthorship W4385428254A5039180167 @default.
- W4385428254 hasAuthorship W4385428254A5044826085 @default.
- W4385428254 hasConcept C105795698 @default.
- W4385428254 hasConcept C119857082 @default.
- W4385428254 hasConcept C124101348 @default.
- W4385428254 hasConcept C151304367 @default.
- W4385428254 hasConcept C154945302 @default.
- W4385428254 hasConcept C15744967 @default.
- W4385428254 hasConcept C158154518 @default.
- W4385428254 hasConcept C17744445 @default.
- W4385428254 hasConcept C199539241 @default.
- W4385428254 hasConcept C2522767166 @default.
- W4385428254 hasConcept C27438332 @default.
- W4385428254 hasConcept C2780586970 @default.
- W4385428254 hasConcept C33923547 @default.
- W4385428254 hasConcept C39896193 @default.
- W4385428254 hasConcept C41008148 @default.
- W4385428254 hasConcept C50644808 @default.
- W4385428254 hasConcept C70518039 @default.
- W4385428254 hasConcept C73555534 @default.
- W4385428254 hasConcept C77805123 @default.
- W4385428254 hasConcept C79158427 @default.
- W4385428254 hasConcept C8038995 @default.
- W4385428254 hasConceptScore W4385428254C105795698 @default.
- W4385428254 hasConceptScore W4385428254C119857082 @default.
- W4385428254 hasConceptScore W4385428254C124101348 @default.
- W4385428254 hasConceptScore W4385428254C151304367 @default.
- W4385428254 hasConceptScore W4385428254C154945302 @default.
- W4385428254 hasConceptScore W4385428254C15744967 @default.
- W4385428254 hasConceptScore W4385428254C158154518 @default.
- W4385428254 hasConceptScore W4385428254C17744445 @default.
- W4385428254 hasConceptScore W4385428254C199539241 @default.
- W4385428254 hasConceptScore W4385428254C2522767166 @default.
- W4385428254 hasConceptScore W4385428254C27438332 @default.
- W4385428254 hasConceptScore W4385428254C2780586970 @default.
- W4385428254 hasConceptScore W4385428254C33923547 @default.
- W4385428254 hasConceptScore W4385428254C39896193 @default.
- W4385428254 hasConceptScore W4385428254C41008148 @default.
- W4385428254 hasConceptScore W4385428254C50644808 @default.
- W4385428254 hasConceptScore W4385428254C70518039 @default.
- W4385428254 hasConceptScore W4385428254C73555534 @default.
- W4385428254 hasConceptScore W4385428254C77805123 @default.
- W4385428254 hasConceptScore W4385428254C79158427 @default.
- W4385428254 hasConceptScore W4385428254C8038995 @default.
- W4385428254 hasIssue "4" @default.
- W4385428254 hasLocation W43854282541 @default.
- W4385428254 hasOpenAccess W4385428254 @default.
- W4385428254 hasPrimaryLocation W43854282541 @default.
- W4385428254 hasRelatedWork W2018199316 @default.
- W4385428254 hasRelatedWork W2138351929 @default.
- W4385428254 hasRelatedWork W2334778330 @default.
- W4385428254 hasRelatedWork W2368819109 @default.
- W4385428254 hasRelatedWork W2771038650 @default.
- W4385428254 hasRelatedWork W3196155444 @default.
- W4385428254 hasRelatedWork W3209574120 @default.
- W4385428254 hasRelatedWork W4224287293 @default.
- W4385428254 hasRelatedWork W4386462264 @default.
- W4385428254 hasRelatedWork W2187875711 @default.
- W4385428254 hasVolume "35" @default.
- W4385428254 isParatext "false" @default.
- W4385428254 isRetracted "false" @default.
- W4385428254 workType "article" @default.