Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385428851> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4385428851 endingPage "8840" @default.
- W4385428851 startingPage "8840" @default.
- W4385428851 abstract "In the present study, we used device visualization in tandem with deep learning to detect weeds in the wheat crop system in actual time. We selected the PMAS Arid Agriculture University research farm and wheat crop fields in diverse weather environments to collect the weed images. Some 6000 images were collected for the study. Throughout the season, tfhe databank was assembled to detect the weeds. For this study, we used two different frameworks, TensorFlow and PyTorch, to apply deep learning algorithms. PyTorch’s implementation of deep learning algorithms performed comparatively better than that of TensorFlow. We concluded that the neural network implemented through the PyTorch framework achieves a superior outcome in speed and accuracy compared to other networks, such as YOLO variants. This work implemented deep learning models for weed detection using different frameworks. While working on real-time detection models, it is very important to consider the inference time and detection accuracy. Therefore, we have compared the results in terms of execution time and prediction accuracy. In particular, the accuracy of weed removal from wheat crops was judged to be 0.89 and 0.91, respectively, with inference times of 9.43 ms and 12.38 ms on the NVIDIA RTX2070 GPU for each picture (640 × 640)." @default.
- W4385428851 created "2023-08-01" @default.
- W4385428851 creator A5013963982 @default.
- W4385428851 creator A5039324531 @default.
- W4385428851 creator A5076310108 @default.
- W4385428851 date "2023-07-31" @default.
- W4385428851 modified "2023-10-16" @default.
- W4385428851 title "Weed Detection in Wheat Crops Using Image Analysis and Artificial Intelligence (AI)" @default.
- W4385428851 cites W2089525142 @default.
- W4385428851 cites W2766360528 @default.
- W4385428851 cites W2783018199 @default.
- W4385428851 cites W2898096575 @default.
- W4385428851 cites W2908783980 @default.
- W4385428851 cites W2909494862 @default.
- W4385428851 cites W2911333173 @default.
- W4385428851 cites W2947507977 @default.
- W4385428851 cites W2968483510 @default.
- W4385428851 cites W2999397506 @default.
- W4385428851 cites W3007602526 @default.
- W4385428851 cites W3010677011 @default.
- W4385428851 cites W3035016091 @default.
- W4385428851 cites W3082499117 @default.
- W4385428851 cites W3123847815 @default.
- W4385428851 cites W3133599571 @default.
- W4385428851 cites W3136950817 @default.
- W4385428851 cites W3158114921 @default.
- W4385428851 cites W3163410982 @default.
- W4385428851 doi "https://doi.org/10.3390/app13158840" @default.
- W4385428851 hasPublicationYear "2023" @default.
- W4385428851 type Work @default.
- W4385428851 citedByCount "0" @default.
- W4385428851 crossrefType "journal-article" @default.
- W4385428851 hasAuthorship W4385428851A5013963982 @default.
- W4385428851 hasAuthorship W4385428851A5039324531 @default.
- W4385428851 hasAuthorship W4385428851A5076310108 @default.
- W4385428851 hasBestOaLocation W43854288511 @default.
- W4385428851 hasConcept C108583219 @default.
- W4385428851 hasConcept C119857082 @default.
- W4385428851 hasConcept C127413603 @default.
- W4385428851 hasConcept C154945302 @default.
- W4385428851 hasConcept C2775891814 @default.
- W4385428851 hasConcept C2776214188 @default.
- W4385428851 hasConcept C41008148 @default.
- W4385428851 hasConcept C50644808 @default.
- W4385428851 hasConcept C6557445 @default.
- W4385428851 hasConcept C86803240 @default.
- W4385428851 hasConcept C88463610 @default.
- W4385428851 hasConceptScore W4385428851C108583219 @default.
- W4385428851 hasConceptScore W4385428851C119857082 @default.
- W4385428851 hasConceptScore W4385428851C127413603 @default.
- W4385428851 hasConceptScore W4385428851C154945302 @default.
- W4385428851 hasConceptScore W4385428851C2775891814 @default.
- W4385428851 hasConceptScore W4385428851C2776214188 @default.
- W4385428851 hasConceptScore W4385428851C41008148 @default.
- W4385428851 hasConceptScore W4385428851C50644808 @default.
- W4385428851 hasConceptScore W4385428851C6557445 @default.
- W4385428851 hasConceptScore W4385428851C86803240 @default.
- W4385428851 hasConceptScore W4385428851C88463610 @default.
- W4385428851 hasIssue "15" @default.
- W4385428851 hasLocation W43854288511 @default.
- W4385428851 hasOpenAccess W4385428851 @default.
- W4385428851 hasPrimaryLocation W43854288511 @default.
- W4385428851 hasRelatedWork W3014300295 @default.
- W4385428851 hasRelatedWork W3164822677 @default.
- W4385428851 hasRelatedWork W4223943233 @default.
- W4385428851 hasRelatedWork W4225161397 @default.
- W4385428851 hasRelatedWork W4309045103 @default.
- W4385428851 hasRelatedWork W4312200629 @default.
- W4385428851 hasRelatedWork W4360585206 @default.
- W4385428851 hasRelatedWork W4364306694 @default.
- W4385428851 hasRelatedWork W4380075502 @default.
- W4385428851 hasRelatedWork W4380086463 @default.
- W4385428851 hasVolume "13" @default.
- W4385428851 isParatext "false" @default.
- W4385428851 isRetracted "false" @default.
- W4385428851 workType "article" @default.