Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385428963> ?p ?o ?g. }
- W4385428963 endingPage "11731" @default.
- W4385428963 startingPage "11731" @default.
- W4385428963 abstract "COVID-19’s rapid spread has disrupted educational initiatives. Schools worldwide have been implementing more possibilities for distance learning because of the worldwide epidemic of the COVID-19 virus, and Pakistan is no exception. However, this has resulted in several problems for students, including reduced access to technology, apathy, and unstable internet connections. It has become more challenging due to the rapid change to evaluate students’ academic development in a remote setting. A hybrid deep learning approach has been presented to evaluate the effectiveness of online education in Pakistan’s fight against the COVID-19 epidemic. Through the use of multiple data sources, including the demographics of students, online activity, learning patterns, and assessment results, this study seeks to realize the goal of precision education. The proposed research makes use of a dataset of Pakistani learners that was compiled during the COVID-19 pandemic. To properly assess the complex and heterogeneous data associated with online learning, the proposed framework employs several deep learning techniques, including 1D Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. With the 98.8% accuracy rate for the trained model, it was clear that the deep learning framework could beat the performance of any other models currently in use. It has improved student performance assessment, which can inform tailored learning interventions and improve Pakistan’s online education. Finally, we compare the findings of this study to those of other, more established studies on evaluating student progress toward educational precision." @default.
- W4385428963 created "2023-08-01" @default.
- W4385428963 creator A5012973079 @default.
- W4385428963 creator A5031709283 @default.
- W4385428963 creator A5033289478 @default.
- W4385428963 creator A5043160131 @default.
- W4385428963 creator A5047310053 @default.
- W4385428963 creator A5063572636 @default.
- W4385428963 date "2023-07-29" @default.
- W4385428963 modified "2023-10-16" @default.
- W4385428963 title "A Hybrid Framework of Deep Learning Techniques to Predict Online Performance of Learners during COVID-19 Pandemic" @default.
- W4385428963 cites W1901616594 @default.
- W4385428963 cites W2001554497 @default.
- W4385428963 cites W2103892444 @default.
- W4385428963 cites W2289488006 @default.
- W4385428963 cites W2768744498 @default.
- W4385428963 cites W2776923805 @default.
- W4385428963 cites W2792959840 @default.
- W4385428963 cites W2892089952 @default.
- W4385428963 cites W2949971284 @default.
- W4385428963 cites W2974661002 @default.
- W4385428963 cites W3021778037 @default.
- W4385428963 cites W3022068322 @default.
- W4385428963 cites W3043044925 @default.
- W4385428963 cites W3103082384 @default.
- W4385428963 cites W3106194696 @default.
- W4385428963 cites W3111059107 @default.
- W4385428963 cites W3130083307 @default.
- W4385428963 cites W3136320629 @default.
- W4385428963 cites W3163015265 @default.
- W4385428963 cites W3175302149 @default.
- W4385428963 cites W3198715155 @default.
- W4385428963 cites W3209461179 @default.
- W4385428963 cites W3210829726 @default.
- W4385428963 cites W3213755621 @default.
- W4385428963 cites W4206012526 @default.
- W4385428963 cites W4206157917 @default.
- W4385428963 cites W4206810344 @default.
- W4385428963 cites W4220787724 @default.
- W4385428963 cites W4220950178 @default.
- W4385428963 cites W4231003933 @default.
- W4385428963 cites W4315781317 @default.
- W4385428963 cites W4315866348 @default.
- W4385428963 cites W4319159469 @default.
- W4385428963 cites W4321523765 @default.
- W4385428963 cites W4327954598 @default.
- W4385428963 cites W4360839122 @default.
- W4385428963 cites W4385351907 @default.
- W4385428963 doi "https://doi.org/10.3390/su151511731" @default.
- W4385428963 hasPublicationYear "2023" @default.
- W4385428963 type Work @default.
- W4385428963 citedByCount "0" @default.
- W4385428963 crossrefType "journal-article" @default.
- W4385428963 hasAuthorship W4385428963A5012973079 @default.
- W4385428963 hasAuthorship W4385428963A5031709283 @default.
- W4385428963 hasAuthorship W4385428963A5033289478 @default.
- W4385428963 hasAuthorship W4385428963A5043160131 @default.
- W4385428963 hasAuthorship W4385428963A5047310053 @default.
- W4385428963 hasAuthorship W4385428963A5063572636 @default.
- W4385428963 hasBestOaLocation W43854289631 @default.
- W4385428963 hasConcept C108583219 @default.
- W4385428963 hasConcept C110875604 @default.
- W4385428963 hasConcept C118552586 @default.
- W4385428963 hasConcept C119857082 @default.
- W4385428963 hasConcept C136764020 @default.
- W4385428963 hasConcept C142724271 @default.
- W4385428963 hasConcept C144024400 @default.
- W4385428963 hasConcept C149923435 @default.
- W4385428963 hasConcept C154945302 @default.
- W4385428963 hasConcept C15744967 @default.
- W4385428963 hasConcept C27415008 @default.
- W4385428963 hasConcept C2779134260 @default.
- W4385428963 hasConcept C2780084366 @default.
- W4385428963 hasConcept C2986087404 @default.
- W4385428963 hasConcept C3008058167 @default.
- W4385428963 hasConcept C41008148 @default.
- W4385428963 hasConcept C49774154 @default.
- W4385428963 hasConcept C524204448 @default.
- W4385428963 hasConcept C71924100 @default.
- W4385428963 hasConcept C81363708 @default.
- W4385428963 hasConcept C89623803 @default.
- W4385428963 hasConceptScore W4385428963C108583219 @default.
- W4385428963 hasConceptScore W4385428963C110875604 @default.
- W4385428963 hasConceptScore W4385428963C118552586 @default.
- W4385428963 hasConceptScore W4385428963C119857082 @default.
- W4385428963 hasConceptScore W4385428963C136764020 @default.
- W4385428963 hasConceptScore W4385428963C142724271 @default.
- W4385428963 hasConceptScore W4385428963C144024400 @default.
- W4385428963 hasConceptScore W4385428963C149923435 @default.
- W4385428963 hasConceptScore W4385428963C154945302 @default.
- W4385428963 hasConceptScore W4385428963C15744967 @default.
- W4385428963 hasConceptScore W4385428963C27415008 @default.
- W4385428963 hasConceptScore W4385428963C2779134260 @default.
- W4385428963 hasConceptScore W4385428963C2780084366 @default.
- W4385428963 hasConceptScore W4385428963C2986087404 @default.
- W4385428963 hasConceptScore W4385428963C3008058167 @default.
- W4385428963 hasConceptScore W4385428963C41008148 @default.
- W4385428963 hasConceptScore W4385428963C49774154 @default.