Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385431177> ?p ?o ?g. }
- W4385431177 endingPage "107309" @default.
- W4385431177 startingPage "107309" @default.
- W4385431177 abstract "Gene selection as a problem with high dimensions has drawn considerable attention in machine learning and computational biology over the past decade. In the field of gene selection in cancer datasets, different types of feature selection techniques in terms of strategy (filter, wrapper and embedded) and label information (supervised, unsupervised, and semi-supervised) have been developed. However, using hybrid feature selection can still improve the performance. In this paper, we propose a hybrid feature selection based on filter and wrapper strategies. In the filter-phase, we develop an unsupervised features selection based on non-convex regularized non-negative matrix factorization and structure learning, which we deem NCNMFSL. In the wrapper-phase, for the first time, mushroom reproduction optimization (MRO) is leveraged to obtain the most informative features subset. In this hybrid feature selection method, irrelevant features are filtered-out through NCNMFSL, and most discriminative features are selected by MRO. To show the effectiveness and proficiency of the proposed method, numerical experiments are conducted on Breast, Heart, Colon, Leukemia, Prostate, Tox-171 and GLI-85 benchmark datasets. SVM and decision tree classifiers are leveraged to analyze proposed technique and top accuracy are 0.97, 0.84, 0.98, 0.95, 0.98, 0.87 and 0.85 for Breast, Heart, Colon, Leukemia, Prostate, Tox-171 and GLI-85, respectively. The computational results show the effectiveness of the proposed method in comparison with state-of-art feature selection techniques." @default.
- W4385431177 created "2023-08-01" @default.
- W4385431177 creator A5003556123 @default.
- W4385431177 creator A5055671287 @default.
- W4385431177 creator A5058768233 @default.
- W4385431177 date "2023-09-01" @default.
- W4385431177 modified "2023-09-23" @default.
- W4385431177 title "Subspace learning using structure learning and non-convex regularization: Hybrid technique with mushroom reproduction optimization in gene selection" @default.
- W4385431177 cites W1444952417 @default.
- W4385431177 cites W1964042173 @default.
- W4385431177 cites W1968698180 @default.
- W4385431177 cites W1989540221 @default.
- W4385431177 cites W2001179019 @default.
- W4385431177 cites W2014915963 @default.
- W4385431177 cites W2015648984 @default.
- W4385431177 cites W2020355555 @default.
- W4385431177 cites W2030363461 @default.
- W4385431177 cites W2037134354 @default.
- W4385431177 cites W2047408445 @default.
- W4385431177 cites W2055631528 @default.
- W4385431177 cites W2068431618 @default.
- W4385431177 cites W2084649778 @default.
- W4385431177 cites W2087327261 @default.
- W4385431177 cites W2087684630 @default.
- W4385431177 cites W2090727353 @default.
- W4385431177 cites W2100909564 @default.
- W4385431177 cites W2103734061 @default.
- W4385431177 cites W2109363337 @default.
- W4385431177 cites W2113890143 @default.
- W4385431177 cites W2118142823 @default.
- W4385431177 cites W2141055671 @default.
- W4385431177 cites W2142594886 @default.
- W4385431177 cites W2144359569 @default.
- W4385431177 cites W2148633389 @default.
- W4385431177 cites W2149772057 @default.
- W4385431177 cites W2154053567 @default.
- W4385431177 cites W2159400887 @default.
- W4385431177 cites W2189101311 @default.
- W4385431177 cites W2343420905 @default.
- W4385431177 cites W2546550103 @default.
- W4385431177 cites W2550999023 @default.
- W4385431177 cites W2593727049 @default.
- W4385431177 cites W2594429093 @default.
- W4385431177 cites W2594857575 @default.
- W4385431177 cites W2605922627 @default.
- W4385431177 cites W2753846453 @default.
- W4385431177 cites W2793733641 @default.
- W4385431177 cites W2891462450 @default.
- W4385431177 cites W2909393029 @default.
- W4385431177 cites W2911627187 @default.
- W4385431177 cites W2921715603 @default.
- W4385431177 cites W2970475223 @default.
- W4385431177 cites W2995014960 @default.
- W4385431177 cites W2997585558 @default.
- W4385431177 cites W3003977585 @default.
- W4385431177 cites W3008627295 @default.
- W4385431177 cites W3041891788 @default.
- W4385431177 cites W3115407590 @default.
- W4385431177 cites W3115527261 @default.
- W4385431177 cites W4213423172 @default.
- W4385431177 cites W4224222011 @default.
- W4385431177 cites W4283072979 @default.
- W4385431177 cites W4289236186 @default.
- W4385431177 cites W4292363360 @default.
- W4385431177 cites W4295185427 @default.
- W4385431177 cites W4307954989 @default.
- W4385431177 cites W4382360363 @default.
- W4385431177 doi "https://doi.org/10.1016/j.compbiomed.2023.107309" @default.
- W4385431177 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37536092" @default.
- W4385431177 hasPublicationYear "2023" @default.
- W4385431177 type Work @default.
- W4385431177 citedByCount "0" @default.
- W4385431177 crossrefType "journal-article" @default.
- W4385431177 hasAuthorship W4385431177A5003556123 @default.
- W4385431177 hasAuthorship W4385431177A5055671287 @default.
- W4385431177 hasAuthorship W4385431177A5058768233 @default.
- W4385431177 hasConcept C119857082 @default.
- W4385431177 hasConcept C12267149 @default.
- W4385431177 hasConcept C148483581 @default.
- W4385431177 hasConcept C153180895 @default.
- W4385431177 hasConcept C154945302 @default.
- W4385431177 hasConcept C41008148 @default.
- W4385431177 hasConcept C59404180 @default.
- W4385431177 hasConcept C97931131 @default.
- W4385431177 hasConceptScore W4385431177C119857082 @default.
- W4385431177 hasConceptScore W4385431177C12267149 @default.
- W4385431177 hasConceptScore W4385431177C148483581 @default.
- W4385431177 hasConceptScore W4385431177C153180895 @default.
- W4385431177 hasConceptScore W4385431177C154945302 @default.
- W4385431177 hasConceptScore W4385431177C41008148 @default.
- W4385431177 hasConceptScore W4385431177C59404180 @default.
- W4385431177 hasConceptScore W4385431177C97931131 @default.
- W4385431177 hasLocation W43854311771 @default.
- W4385431177 hasLocation W43854311772 @default.
- W4385431177 hasOpenAccess W4385431177 @default.
- W4385431177 hasPrimaryLocation W43854311771 @default.
- W4385431177 hasRelatedWork W2009501510 @default.
- W4385431177 hasRelatedWork W2061273563 @default.