Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385431427> ?p ?o ?g. }
- W4385431427 endingPage "375" @default.
- W4385431427 startingPage "356" @default.
- W4385431427 abstract "The quest for trustworthiness in Artificial Intelligence (AI) is increasingly urgent, especially in the field of next-generation wireless networks. Future Beyond 5G (B5G)/6G networks will connect a huge amount of devices and will offer innovative services empowered with AI and Machine Learning tools. Nevertheless, private user data, which are essential for training such services, are not an asset that can be unrestrictedly shared over the network, mainly because of privacy concerns. To overcome this issue, Federated Learning (FL) has recently been proposed as a paradigm to enable collaborative model training among multiple parties, without any disclosure of private raw data. However, the initiative to natively integrate FL services into mobile networks is still far from being accomplished. In this paper we propose a novel FL-as-a-Service framework that provides the B5G/6G network with flexible mechanisms to allow end users to exploit FL services, and we describe its applicability to a Quality of Experience (QoE) forecasting service based on a vehicular networking use case. Specifically, we show how FL of eXplainable AI (XAI) models can be leveraged for the QoE forecasting task, and induces a benefit in terms of both accuracy, compared to local learning, and trustworthiness, thanks to the adoption of inherently interpretable models. Such considerations are supported by an extensive experimental analysis on a publicly available simulated dataset. Finally, we assessed how the learning process is affected by the system deployment and the performance of the underlying communication and computation infrastructure, through system-level simulations, which show the benefits of deploying the proposed framework in edge-based environments." @default.
- W4385431427 created "2023-08-01" @default.
- W4385431427 creator A5001867305 @default.
- W4385431427 creator A5008205801 @default.
- W4385431427 creator A5016154539 @default.
- W4385431427 creator A5024638382 @default.
- W4385431427 creator A5040801756 @default.
- W4385431427 creator A5050099715 @default.
- W4385431427 creator A5050435146 @default.
- W4385431427 creator A5057031606 @default.
- W4385431427 creator A5072857514 @default.
- W4385431427 creator A5079169024 @default.
- W4385431427 date "2023-10-01" @default.
- W4385431427 modified "2023-09-27" @default.
- W4385431427 title "Enabling federated learning of explainable AI models within beyond-5G/6G networks" @default.
- W4385431427 cites W2016086965 @default.
- W4385431427 cites W2077537188 @default.
- W4385431427 cites W2079325629 @default.
- W4385431427 cites W2144201174 @default.
- W4385431427 cites W2301604411 @default.
- W4385431427 cites W2555248751 @default.
- W4385431427 cites W2602923095 @default.
- W4385431427 cites W2765448101 @default.
- W4385431427 cites W2799488224 @default.
- W4385431427 cites W2912213068 @default.
- W4385431427 cites W2981731882 @default.
- W4385431427 cites W2990499011 @default.
- W4385431427 cites W2994838458 @default.
- W4385431427 cites W3012427268 @default.
- W4385431427 cites W3015636663 @default.
- W4385431427 cites W3043040891 @default.
- W4385431427 cites W3043758338 @default.
- W4385431427 cites W3046653923 @default.
- W4385431427 cites W3091180885 @default.
- W4385431427 cites W3092055433 @default.
- W4385431427 cites W3094019951 @default.
- W4385431427 cites W3124995269 @default.
- W4385431427 cites W3130016916 @default.
- W4385431427 cites W3183974872 @default.
- W4385431427 cites W3189532120 @default.
- W4385431427 cites W3207771494 @default.
- W4385431427 cites W3208196934 @default.
- W4385431427 cites W4226428894 @default.
- W4385431427 cites W4292653773 @default.
- W4385431427 doi "https://doi.org/10.1016/j.comcom.2023.07.039" @default.
- W4385431427 hasPublicationYear "2023" @default.
- W4385431427 type Work @default.
- W4385431427 citedByCount "0" @default.
- W4385431427 crossrefType "journal-article" @default.
- W4385431427 hasAuthorship W4385431427A5001867305 @default.
- W4385431427 hasAuthorship W4385431427A5008205801 @default.
- W4385431427 hasAuthorship W4385431427A5016154539 @default.
- W4385431427 hasAuthorship W4385431427A5024638382 @default.
- W4385431427 hasAuthorship W4385431427A5040801756 @default.
- W4385431427 hasAuthorship W4385431427A5050099715 @default.
- W4385431427 hasAuthorship W4385431427A5050435146 @default.
- W4385431427 hasAuthorship W4385431427A5057031606 @default.
- W4385431427 hasAuthorship W4385431427A5072857514 @default.
- W4385431427 hasAuthorship W4385431427A5079169024 @default.
- W4385431427 hasBestOaLocation W43854314271 @default.
- W4385431427 hasConcept C105339364 @default.
- W4385431427 hasConcept C115903868 @default.
- W4385431427 hasConcept C119857082 @default.
- W4385431427 hasConcept C132964779 @default.
- W4385431427 hasConcept C136264566 @default.
- W4385431427 hasConcept C154945302 @default.
- W4385431427 hasConcept C162324750 @default.
- W4385431427 hasConcept C165696696 @default.
- W4385431427 hasConcept C187736073 @default.
- W4385431427 hasConcept C199360897 @default.
- W4385431427 hasConcept C2522767166 @default.
- W4385431427 hasConcept C2780378061 @default.
- W4385431427 hasConcept C2780451532 @default.
- W4385431427 hasConcept C38652104 @default.
- W4385431427 hasConcept C41008148 @default.
- W4385431427 hasConceptScore W4385431427C105339364 @default.
- W4385431427 hasConceptScore W4385431427C115903868 @default.
- W4385431427 hasConceptScore W4385431427C119857082 @default.
- W4385431427 hasConceptScore W4385431427C132964779 @default.
- W4385431427 hasConceptScore W4385431427C136264566 @default.
- W4385431427 hasConceptScore W4385431427C154945302 @default.
- W4385431427 hasConceptScore W4385431427C162324750 @default.
- W4385431427 hasConceptScore W4385431427C165696696 @default.
- W4385431427 hasConceptScore W4385431427C187736073 @default.
- W4385431427 hasConceptScore W4385431427C199360897 @default.
- W4385431427 hasConceptScore W4385431427C2522767166 @default.
- W4385431427 hasConceptScore W4385431427C2780378061 @default.
- W4385431427 hasConceptScore W4385431427C2780451532 @default.
- W4385431427 hasConceptScore W4385431427C38652104 @default.
- W4385431427 hasConceptScore W4385431427C41008148 @default.
- W4385431427 hasLocation W43854314271 @default.
- W4385431427 hasOpenAccess W4385431427 @default.
- W4385431427 hasPrimaryLocation W43854314271 @default.
- W4385431427 hasRelatedWork W2021850411 @default.
- W4385431427 hasRelatedWork W2058081643 @default.
- W4385431427 hasRelatedWork W2280580938 @default.
- W4385431427 hasRelatedWork W2331043530 @default.
- W4385431427 hasRelatedWork W2393933887 @default.