Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385431541> ?p ?o ?g. }
- W4385431541 endingPage "102276" @default.
- W4385431541 startingPage "102276" @default.
- W4385431541 abstract "Submucosal invasion depth is a significant prognostic factor when assessing lymph node metastasis and cancer itself to plan proper treatment for the patient. Conventionally, oncologists measure the invasion depth by hand which is a laborious, subjective, and time-consuming process. The manual pathological examination by measuring accurate carcinoma cell invasion with considerable inter-observer and intra-observer variations is still challenging. The increasing use of medical imaging and artificial intelligence reveals a significant role in clinical medicine and pathology. In this paper, we propose an approach to study invasive behavior and measure the invasion depth of carcinoma from stained histopathology images. Specifically, our model includes adaptive stain normalization, color decomposition, and morphological reconstruction with adaptive thresholding to separate the epithelium with blue ratio image. Our method splits the image into multiple non-overlapping meaningful segments and successfully finds the homogeneous segments to measure accurate invasion depth. The invasion depths are measured from the inner epithelium edge to outermost pixels of the deepest part of particles in image. We conduct our experiments on skin melanoma tissue samples as well as on organotypic invasion model utilizing myoma tissue and oral squamous cell carcinoma. The performance is experimentally compared to three closely related reference methods and our method provides a superior result in measuring invasion depth. This computational technique will be beneficial for the segmentation of epithelium and other particles for the development of novel computer-aided diagnostic tools in biobank applications." @default.
- W4385431541 created "2023-08-01" @default.
- W4385431541 creator A5002609094 @default.
- W4385431541 creator A5022951375 @default.
- W4385431541 creator A5059580063 @default.
- W4385431541 creator A5072722207 @default.
- W4385431541 creator A5072784244 @default.
- W4385431541 date "2023-09-01" @default.
- W4385431541 modified "2023-09-30" @default.
- W4385431541 title "Invasion depth estimation of carcinoma cells using adaptive stain normalization to improve epidermis segmentation accuracy" @default.
- W4385431541 cites W1122315631 @default.
- W4385431541 cites W1691315915 @default.
- W4385431541 cites W1997070192 @default.
- W4385431541 cites W2013001348 @default.
- W4385431541 cites W2015897140 @default.
- W4385431541 cites W2051731429 @default.
- W4385431541 cites W2094126528 @default.
- W4385431541 cites W2099540110 @default.
- W4385431541 cites W2103243046 @default.
- W4385431541 cites W2141619730 @default.
- W4385431541 cites W2202098457 @default.
- W4385431541 cites W2264887978 @default.
- W4385431541 cites W2470965540 @default.
- W4385431541 cites W2560322684 @default.
- W4385431541 cites W2593883319 @default.
- W4385431541 cites W2732257751 @default.
- W4385431541 cites W2751723768 @default.
- W4385431541 cites W2752060020 @default.
- W4385431541 cites W2900089068 @default.
- W4385431541 cites W2907740908 @default.
- W4385431541 cites W2910383665 @default.
- W4385431541 cites W2912724961 @default.
- W4385431541 cites W2967444033 @default.
- W4385431541 cites W2971376088 @default.
- W4385431541 cites W3047083963 @default.
- W4385431541 cites W3047694265 @default.
- W4385431541 cites W3094071141 @default.
- W4385431541 cites W3109000640 @default.
- W4385431541 cites W3116286104 @default.
- W4385431541 cites W3138019027 @default.
- W4385431541 cites W3207010011 @default.
- W4385431541 cites W3217110590 @default.
- W4385431541 cites W4206133222 @default.
- W4385431541 cites W4212903321 @default.
- W4385431541 cites W4214547251 @default.
- W4385431541 cites W4283744233 @default.
- W4385431541 cites W4296935236 @default.
- W4385431541 doi "https://doi.org/10.1016/j.compmedimag.2023.102276" @default.
- W4385431541 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37611486" @default.
- W4385431541 hasPublicationYear "2023" @default.
- W4385431541 type Work @default.
- W4385431541 citedByCount "1" @default.
- W4385431541 crossrefType "journal-article" @default.
- W4385431541 hasAuthorship W4385431541A5002609094 @default.
- W4385431541 hasAuthorship W4385431541A5022951375 @default.
- W4385431541 hasAuthorship W4385431541A5059580063 @default.
- W4385431541 hasAuthorship W4385431541A5072722207 @default.
- W4385431541 hasAuthorship W4385431541A5072784244 @default.
- W4385431541 hasBestOaLocation W43854315411 @default.
- W4385431541 hasConcept C115961682 @default.
- W4385431541 hasConcept C136886441 @default.
- W4385431541 hasConcept C142724271 @default.
- W4385431541 hasConcept C144024400 @default.
- W4385431541 hasConcept C146849305 @default.
- W4385431541 hasConcept C153180895 @default.
- W4385431541 hasConcept C154945302 @default.
- W4385431541 hasConcept C191178318 @default.
- W4385431541 hasConcept C19165224 @default.
- W4385431541 hasConcept C2781294515 @default.
- W4385431541 hasConcept C31972630 @default.
- W4385431541 hasConcept C41008148 @default.
- W4385431541 hasConcept C529295009 @default.
- W4385431541 hasConcept C71924100 @default.
- W4385431541 hasConcept C74864618 @default.
- W4385431541 hasConcept C89600930 @default.
- W4385431541 hasConceptScore W4385431541C115961682 @default.
- W4385431541 hasConceptScore W4385431541C136886441 @default.
- W4385431541 hasConceptScore W4385431541C142724271 @default.
- W4385431541 hasConceptScore W4385431541C144024400 @default.
- W4385431541 hasConceptScore W4385431541C146849305 @default.
- W4385431541 hasConceptScore W4385431541C153180895 @default.
- W4385431541 hasConceptScore W4385431541C154945302 @default.
- W4385431541 hasConceptScore W4385431541C191178318 @default.
- W4385431541 hasConceptScore W4385431541C19165224 @default.
- W4385431541 hasConceptScore W4385431541C2781294515 @default.
- W4385431541 hasConceptScore W4385431541C31972630 @default.
- W4385431541 hasConceptScore W4385431541C41008148 @default.
- W4385431541 hasConceptScore W4385431541C529295009 @default.
- W4385431541 hasConceptScore W4385431541C71924100 @default.
- W4385431541 hasConceptScore W4385431541C74864618 @default.
- W4385431541 hasConceptScore W4385431541C89600930 @default.
- W4385431541 hasLocation W43854315411 @default.
- W4385431541 hasLocation W43854315412 @default.
- W4385431541 hasOpenAccess W4385431541 @default.
- W4385431541 hasPrimaryLocation W43854315411 @default.
- W4385431541 hasRelatedWork W1669643531 @default.
- W4385431541 hasRelatedWork W2005437358 @default.
- W4385431541 hasRelatedWork W2008656436 @default.