Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385436900> ?p ?o ?g. }
- W4385436900 endingPage "103677" @default.
- W4385436900 startingPage "103677" @default.
- W4385436900 abstract "This paper explores the use of physics-informed neural networks (PINNs) to estimate motion and identify system parameters of a moored buoy under three different sea states. PINNs are a deep learning architecture that incorporates physical information to provide an interpretable and physically-meaningful neural network model, making it well-suited for modeling offshore moored structures with high nonlinearity. The moored buoy is modeled as a nonlinear ordinary differential equation (ODE), and the general formulation of PINN for the system of ODEs is established. Two new metrics for motion estimation and system identification are proposed to evaluate the accuracy and efficiency of the implementation of PINN. The results demonstrate that PINN can accurately estimate motion and identify system parameters by choosing appropriate hyperparameters (HPs). This paper also investigates the effects of the number of layers, nodes, and learning rate on motion estimation and system identification to provide a benchmark for selecting optimal HPs. This study finds that hyperparameter optimization can reduce the relative error of identified parameters by up to two thousand times compared to no optimization. Motion estimation prefers large neural networks for all sea states, while at least three layers of neural networks are needed for accurate parameter identification. The paper also provides a look-up table to investigate further implementing PINN on moored floating offshore structures. Proper selection of HPs is crucial as it can incur up to three orders of magnitude PINN loss and exceedingly-high identification error. Overall, this study highlights the applicability of PINN in modeling complex offshore structures and provides insights into selecting optimal HPs for accurate and efficient estimation of motion and system parameters." @default.
- W4385436900 created "2023-08-01" @default.
- W4385436900 creator A5001515276 @default.
- W4385436900 creator A5070580174 @default.
- W4385436900 creator A5070769758 @default.
- W4385436900 date "2023-09-01" @default.
- W4385436900 modified "2023-09-27" @default.
- W4385436900 title "Motion estimation and system identification of a moored buoy via physics-informed neural network" @default.
- W4385436900 cites W1501606973 @default.
- W4385436900 cites W2024254657 @default.
- W4385436900 cites W2025597747 @default.
- W4385436900 cites W2073278726 @default.
- W4385436900 cites W2107338858 @default.
- W4385436900 cites W2172647917 @default.
- W4385436900 cites W2295799421 @default.
- W4385436900 cites W2517617279 @default.
- W4385436900 cites W2782118157 @default.
- W4385436900 cites W2899283552 @default.
- W4385436900 cites W2905886356 @default.
- W4385436900 cites W2925278379 @default.
- W4385436900 cites W2939352300 @default.
- W4385436900 cites W2966168260 @default.
- W4385436900 cites W2981708654 @default.
- W4385436900 cites W3008118574 @default.
- W4385436900 cites W3014009018 @default.
- W4385436900 cites W3094546528 @default.
- W4385436900 cites W3153200540 @default.
- W4385436900 cites W3162791930 @default.
- W4385436900 cites W3163972743 @default.
- W4385436900 cites W3165848759 @default.
- W4385436900 cites W3183913575 @default.
- W4385436900 cites W3199058982 @default.
- W4385436900 cites W3204513291 @default.
- W4385436900 cites W3204769144 @default.
- W4385436900 cites W3204849121 @default.
- W4385436900 cites W3213792417 @default.
- W4385436900 cites W4212806698 @default.
- W4385436900 cites W4213199992 @default.
- W4385436900 cites W4220717841 @default.
- W4385436900 cites W4281614435 @default.
- W4385436900 cites W4288039037 @default.
- W4385436900 cites W4294215098 @default.
- W4385436900 cites W4295885083 @default.
- W4385436900 cites W4309285450 @default.
- W4385436900 cites W4309726528 @default.
- W4385436900 doi "https://doi.org/10.1016/j.apor.2023.103677" @default.
- W4385436900 hasPublicationYear "2023" @default.
- W4385436900 type Work @default.
- W4385436900 citedByCount "0" @default.
- W4385436900 crossrefType "journal-article" @default.
- W4385436900 hasAuthorship W4385436900A5001515276 @default.
- W4385436900 hasAuthorship W4385436900A5070580174 @default.
- W4385436900 hasAuthorship W4385436900A5070769758 @default.
- W4385436900 hasConcept C116834253 @default.
- W4385436900 hasConcept C119857082 @default.
- W4385436900 hasConcept C121332964 @default.
- W4385436900 hasConcept C127313418 @default.
- W4385436900 hasConcept C127413603 @default.
- W4385436900 hasConcept C13280743 @default.
- W4385436900 hasConcept C154945302 @default.
- W4385436900 hasConcept C158622935 @default.
- W4385436900 hasConcept C185798385 @default.
- W4385436900 hasConcept C199104240 @default.
- W4385436900 hasConcept C2779847632 @default.
- W4385436900 hasConcept C28826006 @default.
- W4385436900 hasConcept C33923547 @default.
- W4385436900 hasConcept C34862557 @default.
- W4385436900 hasConcept C41008148 @default.
- W4385436900 hasConcept C50644808 @default.
- W4385436900 hasConcept C59822182 @default.
- W4385436900 hasConcept C62520636 @default.
- W4385436900 hasConcept C8642999 @default.
- W4385436900 hasConcept C86803240 @default.
- W4385436900 hasConceptScore W4385436900C116834253 @default.
- W4385436900 hasConceptScore W4385436900C119857082 @default.
- W4385436900 hasConceptScore W4385436900C121332964 @default.
- W4385436900 hasConceptScore W4385436900C127313418 @default.
- W4385436900 hasConceptScore W4385436900C127413603 @default.
- W4385436900 hasConceptScore W4385436900C13280743 @default.
- W4385436900 hasConceptScore W4385436900C154945302 @default.
- W4385436900 hasConceptScore W4385436900C158622935 @default.
- W4385436900 hasConceptScore W4385436900C185798385 @default.
- W4385436900 hasConceptScore W4385436900C199104240 @default.
- W4385436900 hasConceptScore W4385436900C2779847632 @default.
- W4385436900 hasConceptScore W4385436900C28826006 @default.
- W4385436900 hasConceptScore W4385436900C33923547 @default.
- W4385436900 hasConceptScore W4385436900C34862557 @default.
- W4385436900 hasConceptScore W4385436900C41008148 @default.
- W4385436900 hasConceptScore W4385436900C50644808 @default.
- W4385436900 hasConceptScore W4385436900C59822182 @default.
- W4385436900 hasConceptScore W4385436900C62520636 @default.
- W4385436900 hasConceptScore W4385436900C8642999 @default.
- W4385436900 hasConceptScore W4385436900C86803240 @default.
- W4385436900 hasLocation W43854369001 @default.
- W4385436900 hasOpenAccess W4385436900 @default.
- W4385436900 hasPrimaryLocation W43854369001 @default.
- W4385436900 hasRelatedWork W3014815208 @default.
- W4385436900 hasRelatedWork W3081580854 @default.