Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385442557> ?p ?o ?g. }
- W4385442557 abstract "Coarse-grained molecular dynamics (CGMD) simulations address lengthscales and timescales that are critical to many chemical and material applications. Nevertheless, contemporary CGMD modeling is relatively bespoke and there are no black-box CGMD methodologies available that could play a comparable role in discovery applications that density functional theory plays for electronic structure. This gap might be filled by machine learning (ML)-based CGMD potentials that simplify model development, but these methods are still in their early stages and have yet to demonstrate a significant advantage over existing physics-based CGMD methods. Here, we explore the potential of Δ-learning models to leverage the advantages of these two approaches. This is implemented by using ML-based potentials to learn the difference between the target CGMD variable and the predictions of physics-based potentials. The Δ-models are benchmarked against the baseline models in reproducing on-target and off-target atomistic properties as a function of CG resolution, mapping operator, and system topology. The Δ-models outperform the reference ML-only CGMD models in nearly all scenarios. In several cases, the ML-only models manage to minimize training errors while still producing qualitatively incorrect dynamics, which is corrected by the Δ-models. Given their negligible added cost, Δ-models provide essentially free gains over their ML-only counterparts. Nevertheless, an unexpected finding is that neither the Δ-learning models nor the ML-only models significantly outperform the elementary pairwise models in reproducing atomistic properties. This fundamental failure is attributed to the relatively large irreducible force errors associated with coarse-graining that produces little benefit from using more complex potentials." @default.
- W4385442557 created "2023-08-02" @default.
- W4385442557 creator A5013076223 @default.
- W4385442557 creator A5040584481 @default.
- W4385442557 date "2023-08-01" @default.
- W4385442557 modified "2023-09-27" @default.
- W4385442557 title "Δ-Learning applied to coarse-grained homogeneous liquids" @default.
- W4385442557 cites W1576468296 @default.
- W4385442557 cites W1970020049 @default.
- W4385442557 cites W1978656738 @default.
- W4385442557 cites W1991297418 @default.
- W4385442557 cites W2002480191 @default.
- W4385442557 cites W2019465613 @default.
- W4385442557 cites W2025444507 @default.
- W4385442557 cites W2026737855 @default.
- W4385442557 cites W2036239645 @default.
- W4385442557 cites W2036479410 @default.
- W4385442557 cites W2053058099 @default.
- W4385442557 cites W2060174126 @default.
- W4385442557 cites W2060330613 @default.
- W4385442557 cites W2061308254 @default.
- W4385442557 cites W2065148800 @default.
- W4385442557 cites W2066005503 @default.
- W4385442557 cites W2087719762 @default.
- W4385442557 cites W2095530874 @default.
- W4385442557 cites W2096184149 @default.
- W4385442557 cites W2108221460 @default.
- W4385442557 cites W2119822810 @default.
- W4385442557 cites W2132636831 @default.
- W4385442557 cites W2142694980 @default.
- W4385442557 cites W2159565091 @default.
- W4385442557 cites W2161853530 @default.
- W4385442557 cites W2168536864 @default.
- W4385442557 cites W2206549441 @default.
- W4385442557 cites W2315744487 @default.
- W4385442557 cites W2317986418 @default.
- W4385442557 cites W2325376314 @default.
- W4385442557 cites W2334817875 @default.
- W4385442557 cites W2413334978 @default.
- W4385442557 cites W2471887004 @default.
- W4385442557 cites W2493802071 @default.
- W4385442557 cites W2558395406 @default.
- W4385442557 cites W2771490327 @default.
- W4385442557 cites W2884338472 @default.
- W4385442557 cites W2901995873 @default.
- W4385442557 cites W2969431620 @default.
- W4385442557 cites W2998573338 @default.
- W4385442557 cites W3015196325 @default.
- W4385442557 cites W3044870571 @default.
- W4385442557 cites W3092794557 @default.
- W4385442557 cites W3098370560 @default.
- W4385442557 cites W3103390675 @default.
- W4385442557 cites W3103670527 @default.
- W4385442557 cites W3105774298 @default.
- W4385442557 cites W3111570204 @default.
- W4385442557 cites W3117681575 @default.
- W4385442557 cites W3206968565 @default.
- W4385442557 cites W4281477498 @default.
- W4385442557 cites W4318681889 @default.
- W4385442557 doi "https://doi.org/10.1063/5.0157742" @default.
- W4385442557 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37526160" @default.
- W4385442557 hasPublicationYear "2023" @default.
- W4385442557 type Work @default.
- W4385442557 citedByCount "0" @default.
- W4385442557 crossrefType "journal-article" @default.
- W4385442557 hasAuthorship W4385442557A5013076223 @default.
- W4385442557 hasAuthorship W4385442557A5040584481 @default.
- W4385442557 hasBestOaLocation W43854425571 @default.
- W4385442557 hasConcept C121332964 @default.
- W4385442557 hasConcept C121864883 @default.
- W4385442557 hasConcept C147597530 @default.
- W4385442557 hasConcept C153083717 @default.
- W4385442557 hasConcept C154945302 @default.
- W4385442557 hasConcept C185592680 @default.
- W4385442557 hasConcept C41008148 @default.
- W4385442557 hasConcept C59593255 @default.
- W4385442557 hasConceptScore W4385442557C121332964 @default.
- W4385442557 hasConceptScore W4385442557C121864883 @default.
- W4385442557 hasConceptScore W4385442557C147597530 @default.
- W4385442557 hasConceptScore W4385442557C153083717 @default.
- W4385442557 hasConceptScore W4385442557C154945302 @default.
- W4385442557 hasConceptScore W4385442557C185592680 @default.
- W4385442557 hasConceptScore W4385442557C41008148 @default.
- W4385442557 hasConceptScore W4385442557C59593255 @default.
- W4385442557 hasFunder F4320306076 @default.
- W4385442557 hasIssue "5" @default.
- W4385442557 hasLocation W43854425571 @default.
- W4385442557 hasLocation W43854425572 @default.
- W4385442557 hasOpenAccess W4385442557 @default.
- W4385442557 hasPrimaryLocation W43854425571 @default.
- W4385442557 hasRelatedWork W1979636120 @default.
- W4385442557 hasRelatedWork W2000045761 @default.
- W4385442557 hasRelatedWork W2006281714 @default.
- W4385442557 hasRelatedWork W2030596326 @default.
- W4385442557 hasRelatedWork W2033116315 @default.
- W4385442557 hasRelatedWork W2052104336 @default.
- W4385442557 hasRelatedWork W2078162783 @default.
- W4385442557 hasRelatedWork W2089020875 @default.
- W4385442557 hasRelatedWork W2807582166 @default.
- W4385442557 hasRelatedWork W4296285654 @default.