Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385446088> ?p ?o ?g. }
- W4385446088 endingPage "1369" @default.
- W4385446088 startingPage "1338" @default.
- W4385446088 abstract "Conventional inversion of the discrete Fourier transform (DFT) requires all DFT coefficients to be known. When the DFT coefficients of a rasterized image (represented as a matrix) are known only within a pass band, the original matrix cannot be uniquely recovered. In many cases of practical importance, the matrix is binary and its elements can be reduced to either 0 or 1. This is the case, for example, for the commonly used QR codes. The a priori information that the matrix is binary can compensate for the missing high-frequency DFT coefficients and restore uniqueness of image recovery. This paper addresses, both theoretically and numerically, the problem of recovery of blurred images without any known structure whose high-frequency DFT coefficients have been irreversibly lost by utilizing the binarity constraint. We investigate theoretically the smallest band limit for which unique recovery of a generic binary matrix is still possible. Uniqueness results are proved for images of sizes , , and , where are prime numbers and an integer. Inversion algorithms are proposed for recovering the matrix from its band-limited (blurred) version. The algorithms combine integer linear programming methods with lattice basis reduction techniques and significantly outperform naive implementations. The algorithm efficiently and reliably reconstructs severely blurred binary matrices with only DFT coefficients." @default.
- W4385446088 created "2023-08-02" @default.
- W4385446088 creator A5019789204 @default.
- W4385446088 creator A5020897629 @default.
- W4385446088 creator A5060974395 @default.
- W4385446088 date "2023-08-01" @default.
- W4385446088 modified "2023-10-16" @default.
- W4385446088 title "Inversion of Band-Limited Discrete Fourier Transforms of Binary Images: Uniqueness and Algorithms" @default.
- W4385446088 cites W1489426117 @default.
- W4385446088 cites W1554432775 @default.
- W4385446088 cites W1662624818 @default.
- W4385446088 cites W1973788353 @default.
- W4385446088 cites W1980758215 @default.
- W4385446088 cites W1980811840 @default.
- W4385446088 cites W1982979061 @default.
- W4385446088 cites W1983695700 @default.
- W4385446088 cites W2001147566 @default.
- W4385446088 cites W2011756264 @default.
- W4385446088 cites W2015370877 @default.
- W4385446088 cites W2015386996 @default.
- W4385446088 cites W2017527868 @default.
- W4385446088 cites W2018850502 @default.
- W4385446088 cites W2025079166 @default.
- W4385446088 cites W2027157239 @default.
- W4385446088 cites W2027906720 @default.
- W4385446088 cites W2035816523 @default.
- W4385446088 cites W2039757206 @default.
- W4385446088 cites W2047264196 @default.
- W4385446088 cites W2067161429 @default.
- W4385446088 cites W2072502638 @default.
- W4385446088 cites W2083272543 @default.
- W4385446088 cites W2083844723 @default.
- W4385446088 cites W2087749018 @default.
- W4385446088 cites W2100556411 @default.
- W4385446088 cites W2103236565 @default.
- W4385446088 cites W2103559027 @default.
- W4385446088 cites W2105302414 @default.
- W4385446088 cites W2105884433 @default.
- W4385446088 cites W2106967375 @default.
- W4385446088 cites W2114616381 @default.
- W4385446088 cites W2117504940 @default.
- W4385446088 cites W2125455772 @default.
- W4385446088 cites W2127264496 @default.
- W4385446088 cites W2127271355 @default.
- W4385446088 cites W2134241615 @default.
- W4385446088 cites W2134656724 @default.
- W4385446088 cites W2141040012 @default.
- W4385446088 cites W2145096794 @default.
- W4385446088 cites W2157520643 @default.
- W4385446088 cites W2167839759 @default.
- W4385446088 cites W2280462056 @default.
- W4385446088 cites W2324891385 @default.
- W4385446088 cites W2401610261 @default.
- W4385446088 cites W2573726823 @default.
- W4385446088 cites W2725326552 @default.
- W4385446088 cites W2732514310 @default.
- W4385446088 cites W285819963 @default.
- W4385446088 cites W2963322354 @default.
- W4385446088 cites W2963949810 @default.
- W4385446088 cites W3107853093 @default.
- W4385446088 cites W3138128197 @default.
- W4385446088 cites W4241214195 @default.
- W4385446088 cites W4246168648 @default.
- W4385446088 cites W4285293979 @default.
- W4385446088 doi "https://doi.org/10.1137/22m1540442" @default.
- W4385446088 hasPublicationYear "2023" @default.
- W4385446088 type Work @default.
- W4385446088 citedByCount "0" @default.
- W4385446088 crossrefType "journal-article" @default.
- W4385446088 hasAuthorship W4385446088A5019789204 @default.
- W4385446088 hasAuthorship W4385446088A5020897629 @default.
- W4385446088 hasAuthorship W4385446088A5060974395 @default.
- W4385446088 hasBestOaLocation W43854460882 @default.
- W4385446088 hasConcept C102519508 @default.
- W4385446088 hasConcept C106487976 @default.
- W4385446088 hasConcept C109007969 @default.
- W4385446088 hasConcept C11413529 @default.
- W4385446088 hasConcept C134306372 @default.
- W4385446088 hasConcept C151730666 @default.
- W4385446088 hasConcept C159985019 @default.
- W4385446088 hasConcept C1893757 @default.
- W4385446088 hasConcept C192562407 @default.
- W4385446088 hasConcept C203024314 @default.
- W4385446088 hasConcept C2777021972 @default.
- W4385446088 hasConcept C33923547 @default.
- W4385446088 hasConcept C48372109 @default.
- W4385446088 hasConcept C57733114 @default.
- W4385446088 hasConcept C76563020 @default.
- W4385446088 hasConcept C86803240 @default.
- W4385446088 hasConcept C94375191 @default.
- W4385446088 hasConceptScore W4385446088C102519508 @default.
- W4385446088 hasConceptScore W4385446088C106487976 @default.
- W4385446088 hasConceptScore W4385446088C109007969 @default.
- W4385446088 hasConceptScore W4385446088C11413529 @default.
- W4385446088 hasConceptScore W4385446088C134306372 @default.
- W4385446088 hasConceptScore W4385446088C151730666 @default.
- W4385446088 hasConceptScore W4385446088C159985019 @default.
- W4385446088 hasConceptScore W4385446088C1893757 @default.