Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385451161> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4385451161 abstract "Abstract This research presents an innovative approach called Tenacious Fish Swarm Optimization based Hidden Markov Model (TFSO-HMM) for augmented accurate cotton leaf disease identification and yield prediction. Cotton leaf diseases significantly threaten crop productivity, requiring timely detection and precise prediction for effective disease management. The proposed TFSO-HMM framework combines the strengths of Tenacious Fish Swarm Optimization (TFSO) and the Hidden Markov Model (HMM) to address the challenges associated with disease identification and yield prediction in cotton plants. TFSO, a nature-inspired optimization algorithm, optimizes the classification process, enhancing the accuracy of disease identification. By harnessing the collective intelligence of fish swarms, TFSO intelligently explores the search space to identify the optimal solution. The selected information is then incorporated into the HMM framework, which captures the temporal dependencies in disease progression and yield prediction. HMM's sequential modelling approach facilitates understanding the dynamic behaviour of cotton leaf diseases over time, leading to more accurate predictions. Experimental results on a comprehensive dataset demonstrate the superior performance of the TFSO-HMM method over existing approaches in terms of accuracy and predictive capability. The augmented accuracy achieved through TFSO-HMM enables early detection and precise prediction of cotton leaf diseases, enabling timely interventions for disease management and maximizing crop yield." @default.
- W4385451161 created "2023-08-02" @default.
- W4385451161 creator A5022961456 @default.
- W4385451161 creator A5038963490 @default.
- W4385451161 date "2023-08-01" @default.
- W4385451161 modified "2023-09-27" @default.
- W4385451161 title "Tenacious Fish Swarm Optimization Based Hidden Markov Model (TFSO-HMM) for Augmented Accurate Cotton Leaf Disease Identification and Yield Prediction" @default.
- W4385451161 cites W2789059691 @default.
- W4385451161 cites W2905771321 @default.
- W4385451161 cites W2942760891 @default.
- W4385451161 cites W2979028300 @default.
- W4385451161 cites W2998654331 @default.
- W4385451161 cites W2998933398 @default.
- W4385451161 cites W3006051906 @default.
- W4385451161 cites W3045952933 @default.
- W4385451161 cites W3080244062 @default.
- W4385451161 cites W3085800722 @default.
- W4385451161 cites W3153838060 @default.
- W4385451161 cites W3167324598 @default.
- W4385451161 cites W3198505109 @default.
- W4385451161 cites W3199028661 @default.
- W4385451161 cites W3202141434 @default.
- W4385451161 cites W3208313440 @default.
- W4385451161 cites W4205555581 @default.
- W4385451161 cites W4220844678 @default.
- W4385451161 cites W4223943664 @default.
- W4385451161 cites W4223949163 @default.
- W4385451161 cites W4224117914 @default.
- W4385451161 cites W4224124000 @default.
- W4385451161 cites W4226106121 @default.
- W4385451161 cites W4226114915 @default.
- W4385451161 cites W4239510810 @default.
- W4385451161 cites W4252557163 @default.
- W4385451161 cites W4281630927 @default.
- W4385451161 cites W4289865896 @default.
- W4385451161 cites W4296619339 @default.
- W4385451161 cites W4307562876 @default.
- W4385451161 cites W4308931327 @default.
- W4385451161 cites W4312554066 @default.
- W4385451161 cites W4318332769 @default.
- W4385451161 cites W4321353736 @default.
- W4385451161 cites W4372356131 @default.
- W4385451161 doi "https://doi.org/10.21203/rs.3.rs-3142216/v1" @default.
- W4385451161 hasPublicationYear "2023" @default.
- W4385451161 type Work @default.
- W4385451161 citedByCount "0" @default.
- W4385451161 crossrefType "posted-content" @default.
- W4385451161 hasAuthorship W4385451161A5022961456 @default.
- W4385451161 hasAuthorship W4385451161A5038963490 @default.
- W4385451161 hasBestOaLocation W43854511611 @default.
- W4385451161 hasConcept C116834253 @default.
- W4385451161 hasConcept C119857082 @default.
- W4385451161 hasConcept C153180895 @default.
- W4385451161 hasConcept C154945302 @default.
- W4385451161 hasConcept C181335050 @default.
- W4385451161 hasConcept C23224414 @default.
- W4385451161 hasConcept C41008148 @default.
- W4385451161 hasConcept C59822182 @default.
- W4385451161 hasConcept C86803240 @default.
- W4385451161 hasConceptScore W4385451161C116834253 @default.
- W4385451161 hasConceptScore W4385451161C119857082 @default.
- W4385451161 hasConceptScore W4385451161C153180895 @default.
- W4385451161 hasConceptScore W4385451161C154945302 @default.
- W4385451161 hasConceptScore W4385451161C181335050 @default.
- W4385451161 hasConceptScore W4385451161C23224414 @default.
- W4385451161 hasConceptScore W4385451161C41008148 @default.
- W4385451161 hasConceptScore W4385451161C59822182 @default.
- W4385451161 hasConceptScore W4385451161C86803240 @default.
- W4385451161 hasLocation W43854511611 @default.
- W4385451161 hasOpenAccess W4385451161 @default.
- W4385451161 hasPrimaryLocation W43854511611 @default.
- W4385451161 hasRelatedWork W2539985974 @default.
- W4385451161 hasRelatedWork W2961085424 @default.
- W4385451161 hasRelatedWork W3046775127 @default.
- W4385451161 hasRelatedWork W3170094116 @default.
- W4385451161 hasRelatedWork W4205958290 @default.
- W4385451161 hasRelatedWork W4285260836 @default.
- W4385451161 hasRelatedWork W4286629047 @default.
- W4385451161 hasRelatedWork W4306321456 @default.
- W4385451161 hasRelatedWork W4306674287 @default.
- W4385451161 hasRelatedWork W4224009465 @default.
- W4385451161 isParatext "false" @default.
- W4385451161 isRetracted "false" @default.
- W4385451161 workType "article" @default.