Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385454312> ?p ?o ?g. }
- W4385454312 abstract "This paper presents a Bayesian-based approach to realize virtual strain sensing and quantify the uncertainty in these estimates using sparse output-only measurements. This method relies on output-only measurements to identify the modal coordinates of the structure and realizes the virtual sensing according to the modal superposition method. A robust Hierarchical Bayesian modeling (HBM) framework is developed to fully account for the uncertainties arising from modeling errors and measurement noise. Moreover, the HBM framework has the ability to quantify the uncertainty of parameters in the statistical model by introducing an additional layer of the prior distribution. The Gibbs sampler is adopted to obtain the marginal posterior distributions of the hyper-parameters, with the implementation of Gibbs methods relying on the derived analytical expressions of the full conditional posterior distributions. The Laplace asymptotic approximation simplified the form of the full conditional posterior distributions, thus improving the computational efficiency. Given the hyper-parameters’ marginal posterior distribution, the dynamic parameters’ marginal posterior distribution can be calculated according to the total probability theorem. Finally, one can propagate the uncertainty to make predictions of quantities of interest (QoI). Three case studies, including two numerical examples and a laboratory model test, are carried out to verify the accuracy and efficiency of the proposed algorithm. The results show that the estimates of the parameters are close to the true values. Besides, the prediction results of QoI also show high accuracy, verifying the effectiveness of the proposed HBM method in virtual sensing." @default.
- W4385454312 created "2023-08-02" @default.
- W4385454312 creator A5038015706 @default.
- W4385454312 creator A5041615605 @default.
- W4385454312 creator A5072220535 @default.
- W4385454312 creator A5082458789 @default.
- W4385454312 creator A5090165979 @default.
- W4385454312 date "2023-08-01" @default.
- W4385454312 modified "2023-10-16" @default.
- W4385454312 title "Virtual sensing based on Hierarchical Bayesian modeling framework using a Laplace-based Gibbs sampler" @default.
- W4385454312 cites W1979416967 @default.
- W4385454312 cites W1983671004 @default.
- W4385454312 cites W2057412383 @default.
- W4385454312 cites W2077026719 @default.
- W4385454312 cites W2083818016 @default.
- W4385454312 cites W2091643325 @default.
- W4385454312 cites W2307556369 @default.
- W4385454312 cites W2516809051 @default.
- W4385454312 cites W2547960182 @default.
- W4385454312 cites W2577761826 @default.
- W4385454312 cites W2764128407 @default.
- W4385454312 cites W2766481949 @default.
- W4385454312 cites W2782714405 @default.
- W4385454312 cites W2790913893 @default.
- W4385454312 cites W2810806496 @default.
- W4385454312 cites W2896365917 @default.
- W4385454312 cites W2915877864 @default.
- W4385454312 cites W2953407388 @default.
- W4385454312 cites W2964065315 @default.
- W4385454312 cites W2967115379 @default.
- W4385454312 cites W2967819568 @default.
- W4385454312 cites W2974061546 @default.
- W4385454312 cites W3004414241 @default.
- W4385454312 cites W3043749415 @default.
- W4385454312 cites W3087107314 @default.
- W4385454312 cites W3101249673 @default.
- W4385454312 cites W3112407952 @default.
- W4385454312 cites W3135986616 @default.
- W4385454312 cites W3147567889 @default.
- W4385454312 cites W3183175807 @default.
- W4385454312 cites W352852420 @default.
- W4385454312 cites W4206179452 @default.
- W4385454312 cites W4206468463 @default.
- W4385454312 cites W4206654642 @default.
- W4385454312 cites W4210392786 @default.
- W4385454312 cites W4220770499 @default.
- W4385454312 cites W4225403255 @default.
- W4385454312 cites W4285489816 @default.
- W4385454312 cites W4288420461 @default.
- W4385454312 cites W4292689530 @default.
- W4385454312 cites W4295940691 @default.
- W4385454312 cites W4302024124 @default.
- W4385454312 cites W4320016588 @default.
- W4385454312 cites W4320168491 @default.
- W4385454312 doi "https://doi.org/10.1016/j.apm.2023.07.035" @default.
- W4385454312 hasPublicationYear "2023" @default.
- W4385454312 type Work @default.
- W4385454312 citedByCount "0" @default.
- W4385454312 crossrefType "journal-article" @default.
- W4385454312 hasAuthorship W4385454312A5038015706 @default.
- W4385454312 hasAuthorship W4385454312A5041615605 @default.
- W4385454312 hasAuthorship W4385454312A5072220535 @default.
- W4385454312 hasAuthorship W4385454312A5082458789 @default.
- W4385454312 hasAuthorship W4385454312A5090165979 @default.
- W4385454312 hasConcept C105795698 @default.
- W4385454312 hasConcept C107673813 @default.
- W4385454312 hasConcept C11413529 @default.
- W4385454312 hasConcept C122123141 @default.
- W4385454312 hasConcept C126255220 @default.
- W4385454312 hasConcept C158424031 @default.
- W4385454312 hasConcept C160234255 @default.
- W4385454312 hasConcept C165216359 @default.
- W4385454312 hasConcept C191413810 @default.
- W4385454312 hasConcept C22243797 @default.
- W4385454312 hasConcept C28826006 @default.
- W4385454312 hasConcept C33923547 @default.
- W4385454312 hasConcept C41008148 @default.
- W4385454312 hasConcept C43555835 @default.
- W4385454312 hasConcept C57830394 @default.
- W4385454312 hasConceptScore W4385454312C105795698 @default.
- W4385454312 hasConceptScore W4385454312C107673813 @default.
- W4385454312 hasConceptScore W4385454312C11413529 @default.
- W4385454312 hasConceptScore W4385454312C122123141 @default.
- W4385454312 hasConceptScore W4385454312C126255220 @default.
- W4385454312 hasConceptScore W4385454312C158424031 @default.
- W4385454312 hasConceptScore W4385454312C160234255 @default.
- W4385454312 hasConceptScore W4385454312C165216359 @default.
- W4385454312 hasConceptScore W4385454312C191413810 @default.
- W4385454312 hasConceptScore W4385454312C22243797 @default.
- W4385454312 hasConceptScore W4385454312C28826006 @default.
- W4385454312 hasConceptScore W4385454312C33923547 @default.
- W4385454312 hasConceptScore W4385454312C41008148 @default.
- W4385454312 hasConceptScore W4385454312C43555835 @default.
- W4385454312 hasConceptScore W4385454312C57830394 @default.
- W4385454312 hasLocation W43854543121 @default.
- W4385454312 hasOpenAccess W4385454312 @default.
- W4385454312 hasPrimaryLocation W43854543121 @default.
- W4385454312 hasRelatedWork W118730952 @default.
- W4385454312 hasRelatedWork W1503346991 @default.
- W4385454312 hasRelatedWork W2032094637 @default.