Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385454769> ?p ?o ?g. }
- W4385454769 abstract "In the collider phenomenology of extensions of the Standard Model with partner particles, cascade decays occur generically, and they can be challenging to discover when the spectrum of new particles is compressed and the signal cross section is low. Achieving discovery-level significance and measuring the properties of the new particles appearing as intermediate states in the cascade decays is a longstanding problem, with analysis techniques for some decay topologies already optimized. We focus our attention on a benchmark decay topology with four final state particles where there is room for improvement, and where multidimensional analysis techniques have been shown to be effective in the past. Using machine learning techniques, we identify the optimal kinematic observables for discovery, spin determination and mass measurement. In agreement with past work, we confirm that the kinematic observable $Delta_4$ is highly effective. We quantify the achievable accuracy for spin determination and for the precision for mass measurements as a function of the signal size." @default.
- W4385454769 created "2023-08-02" @default.
- W4385454769 creator A5024298926 @default.
- W4385454769 creator A5041608129 @default.
- W4385454769 creator A5044745379 @default.
- W4385454769 creator A5049269282 @default.
- W4385454769 date "2023-08-01" @default.
- W4385454769 modified "2023-10-10" @default.
- W4385454769 title "Applying machine learning techniques to intermediate-length cascade decays" @default.
- W4385454769 cites W109685882 @default.
- W4385454769 cites W1669086520 @default.
- W4385454769 cites W1969740902 @default.
- W4385454769 cites W1986034677 @default.
- W4385454769 cites W2011280313 @default.
- W4385454769 cites W2013870690 @default.
- W4385454769 cites W2027311796 @default.
- W4385454769 cites W2038748210 @default.
- W4385454769 cites W2045135295 @default.
- W4385454769 cites W2046259776 @default.
- W4385454769 cites W2065059543 @default.
- W4385454769 cites W2068731054 @default.
- W4385454769 cites W2075807141 @default.
- W4385454769 cites W2081239917 @default.
- W4385454769 cites W2081371546 @default.
- W4385454769 cites W2086460379 @default.
- W4385454769 cites W2090344627 @default.
- W4385454769 cites W2105309807 @default.
- W4385454769 cites W2105838210 @default.
- W4385454769 cites W2125621954 @default.
- W4385454769 cites W2126217975 @default.
- W4385454769 cites W2126289730 @default.
- W4385454769 cites W2128179456 @default.
- W4385454769 cites W2131034562 @default.
- W4385454769 cites W2142940338 @default.
- W4385454769 cites W2555152618 @default.
- W4385454769 cites W2558624301 @default.
- W4385454769 cites W2890888583 @default.
- W4385454769 cites W2963116946 @default.
- W4385454769 cites W3094181696 @default.
- W4385454769 cites W3098100335 @default.
- W4385454769 cites W3098873298 @default.
- W4385454769 cites W3099678564 @default.
- W4385454769 cites W3101457089 @default.
- W4385454769 cites W3103589224 @default.
- W4385454769 cites W3104708536 @default.
- W4385454769 cites W3105034043 @default.
- W4385454769 cites W3105254830 @default.
- W4385454769 cites W3105557446 @default.
- W4385454769 cites W3106069912 @default.
- W4385454769 cites W3122181482 @default.
- W4385454769 cites W3123750486 @default.
- W4385454769 cites W3131400234 @default.
- W4385454769 cites W4236133127 @default.
- W4385454769 cites W4284673612 @default.
- W4385454769 doi "https://doi.org/10.1103/physrevd.108.035002" @default.
- W4385454769 hasPublicationYear "2023" @default.
- W4385454769 type Work @default.
- W4385454769 citedByCount "0" @default.
- W4385454769 crossrefType "journal-article" @default.
- W4385454769 hasAuthorship W4385454769A5024298926 @default.
- W4385454769 hasAuthorship W4385454769A5041608129 @default.
- W4385454769 hasAuthorship W4385454769A5044745379 @default.
- W4385454769 hasAuthorship W4385454769A5049269282 @default.
- W4385454769 hasBestOaLocation W43854547691 @default.
- W4385454769 hasConcept C109214941 @default.
- W4385454769 hasConcept C111472728 @default.
- W4385454769 hasConcept C114614502 @default.
- W4385454769 hasConcept C120665830 @default.
- W4385454769 hasConcept C121332964 @default.
- W4385454769 hasConcept C121864883 @default.
- W4385454769 hasConcept C13280743 @default.
- W4385454769 hasConcept C138885662 @default.
- W4385454769 hasConcept C184720557 @default.
- W4385454769 hasConcept C185592680 @default.
- W4385454769 hasConcept C185798385 @default.
- W4385454769 hasConcept C192209626 @default.
- W4385454769 hasConcept C205649164 @default.
- W4385454769 hasConcept C32848918 @default.
- W4385454769 hasConcept C33923547 @default.
- W4385454769 hasConcept C34146451 @default.
- W4385454769 hasConcept C39920418 @default.
- W4385454769 hasConcept C43617362 @default.
- W4385454769 hasConcept C62520636 @default.
- W4385454769 hasConcept C74650414 @default.
- W4385454769 hasConcept C84269361 @default.
- W4385454769 hasConceptScore W4385454769C109214941 @default.
- W4385454769 hasConceptScore W4385454769C111472728 @default.
- W4385454769 hasConceptScore W4385454769C114614502 @default.
- W4385454769 hasConceptScore W4385454769C120665830 @default.
- W4385454769 hasConceptScore W4385454769C121332964 @default.
- W4385454769 hasConceptScore W4385454769C121864883 @default.
- W4385454769 hasConceptScore W4385454769C13280743 @default.
- W4385454769 hasConceptScore W4385454769C138885662 @default.
- W4385454769 hasConceptScore W4385454769C184720557 @default.
- W4385454769 hasConceptScore W4385454769C185592680 @default.
- W4385454769 hasConceptScore W4385454769C185798385 @default.
- W4385454769 hasConceptScore W4385454769C192209626 @default.
- W4385454769 hasConceptScore W4385454769C205649164 @default.
- W4385454769 hasConceptScore W4385454769C32848918 @default.
- W4385454769 hasConceptScore W4385454769C33923547 @default.