Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385454927> ?p ?o ?g. }
- W4385454927 abstract "Hepatitis C Virus (HCV) is a viral infection that causes liver inflammation. Annually, approximately 3.4 million cases of HCV are reported worldwide. A diagnosis of HCV in earlier stages helps to save lives. In the HCV review, the authors used a single ML-based prediction model in the current research, which encounters several issues, i.e., poor accuracy, data imbalance, and overfitting. This research proposed a Hybrid Predictive Model (HPM) based on an improved random forest and support vector machine to overcome existing research limitations. The proposed model improves a random forest method by adding a bootstrapping approach. The existing RF method is enhanced by adding a bootstrapping process, which helps eliminate the tree's minor features iteratively to build a strong forest. It improves the performance of the HPM model. The proposed HPM model utilizes a 'Ranker method' to rank the dataset features and applies an IRF with SVM, selecting higher-ranked feature elements to build the prediction model. This research uses the online HCV dataset from UCI to measure the proposed model's performance. The dataset is highly imbalanced; to deal with this issue, we utilized the synthetic minority over-sampling technique (SMOTE). This research performs two experiments. The first experiment is based on data splitting methods, K-fold cross-validation, and training: testing-based splitting. The proposed method achieved an accuracy of 95.89% for k = 5 and 96.29% for k = 10; for the training and testing-based split, the proposed method achieved 91.24% for 80:20 and 92.39% for 70:30, which is the best compared to the existing SVM, MARS, RF, DT, and BGLM methods. In experiment 2, the analysis is performed using feature selection (with SMOTE and without SMOTE). The proposed method achieves an accuracy of 41.541% without SMOTE and 96.82% with SMOTE-based feature selection, which is better than existing ML methods. The experimental results prove the importance of feature selection to achieve higher accuracy in HCV research." @default.
- W4385454927 created "2023-08-02" @default.
- W4385454927 creator A5007643412 @default.
- W4385454927 creator A5009299159 @default.
- W4385454927 creator A5011694017 @default.
- W4385454927 creator A5032558763 @default.
- W4385454927 creator A5037301734 @default.
- W4385454927 creator A5039191048 @default.
- W4385454927 creator A5042297005 @default.
- W4385454927 creator A5042529202 @default.
- W4385454927 creator A5055546555 @default.
- W4385454927 creator A5084092269 @default.
- W4385454927 date "2023-08-01" @default.
- W4385454927 modified "2023-09-25" @default.
- W4385454927 title "Hybrid model for precise hepatitis-C classification using improved random forest and SVM method" @default.
- W4385454927 cites W1990938316 @default.
- W4385454927 cites W2000323093 @default.
- W4385454927 cites W2097571064 @default.
- W4385454927 cites W2186365449 @default.
- W4385454927 cites W2398648532 @default.
- W4385454927 cites W2564921947 @default.
- W4385454927 cites W2604512916 @default.
- W4385454927 cites W2734724639 @default.
- W4385454927 cites W2790622759 @default.
- W4385454927 cites W2810577347 @default.
- W4385454927 cites W2810841806 @default.
- W4385454927 cites W2898026627 @default.
- W4385454927 cites W2907055014 @default.
- W4385454927 cites W2907242279 @default.
- W4385454927 cites W2946992613 @default.
- W4385454927 cites W2968589179 @default.
- W4385454927 cites W2975181372 @default.
- W4385454927 cites W2979590060 @default.
- W4385454927 cites W2983460561 @default.
- W4385454927 cites W3012302086 @default.
- W4385454927 cites W3015066510 @default.
- W4385454927 cites W3093759039 @default.
- W4385454927 cites W3096840334 @default.
- W4385454927 cites W3145636498 @default.
- W4385454927 cites W3169330846 @default.
- W4385454927 cites W3197217160 @default.
- W4385454927 cites W3214386012 @default.
- W4385454927 cites W4200212321 @default.
- W4385454927 cites W4205251925 @default.
- W4385454927 cites W4206132260 @default.
- W4385454927 cites W4206555576 @default.
- W4385454927 cites W4206946984 @default.
- W4385454927 cites W4220796018 @default.
- W4385454927 cites W4220937941 @default.
- W4385454927 cites W4229049869 @default.
- W4385454927 doi "https://doi.org/10.1038/s41598-023-36605-3" @default.
- W4385454927 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37528148" @default.
- W4385454927 hasPublicationYear "2023" @default.
- W4385454927 type Work @default.
- W4385454927 citedByCount "0" @default.
- W4385454927 crossrefType "journal-article" @default.
- W4385454927 hasAuthorship W4385454927A5007643412 @default.
- W4385454927 hasAuthorship W4385454927A5009299159 @default.
- W4385454927 hasAuthorship W4385454927A5011694017 @default.
- W4385454927 hasAuthorship W4385454927A5032558763 @default.
- W4385454927 hasAuthorship W4385454927A5037301734 @default.
- W4385454927 hasAuthorship W4385454927A5039191048 @default.
- W4385454927 hasAuthorship W4385454927A5042297005 @default.
- W4385454927 hasAuthorship W4385454927A5042529202 @default.
- W4385454927 hasAuthorship W4385454927A5055546555 @default.
- W4385454927 hasAuthorship W4385454927A5084092269 @default.
- W4385454927 hasBestOaLocation W43854549271 @default.
- W4385454927 hasConcept C113174947 @default.
- W4385454927 hasConcept C119857082 @default.
- W4385454927 hasConcept C12267149 @default.
- W4385454927 hasConcept C124101348 @default.
- W4385454927 hasConcept C134306372 @default.
- W4385454927 hasConcept C149782125 @default.
- W4385454927 hasConcept C153180895 @default.
- W4385454927 hasConcept C154945302 @default.
- W4385454927 hasConcept C169258074 @default.
- W4385454927 hasConcept C197323446 @default.
- W4385454927 hasConcept C207609745 @default.
- W4385454927 hasConcept C22019652 @default.
- W4385454927 hasConcept C2776257435 @default.
- W4385454927 hasConcept C31258907 @default.
- W4385454927 hasConcept C33923547 @default.
- W4385454927 hasConcept C41008148 @default.
- W4385454927 hasConcept C50644808 @default.
- W4385454927 hasConceptScore W4385454927C113174947 @default.
- W4385454927 hasConceptScore W4385454927C119857082 @default.
- W4385454927 hasConceptScore W4385454927C12267149 @default.
- W4385454927 hasConceptScore W4385454927C124101348 @default.
- W4385454927 hasConceptScore W4385454927C134306372 @default.
- W4385454927 hasConceptScore W4385454927C149782125 @default.
- W4385454927 hasConceptScore W4385454927C153180895 @default.
- W4385454927 hasConceptScore W4385454927C154945302 @default.
- W4385454927 hasConceptScore W4385454927C169258074 @default.
- W4385454927 hasConceptScore W4385454927C197323446 @default.
- W4385454927 hasConceptScore W4385454927C207609745 @default.
- W4385454927 hasConceptScore W4385454927C22019652 @default.
- W4385454927 hasConceptScore W4385454927C2776257435 @default.
- W4385454927 hasConceptScore W4385454927C31258907 @default.
- W4385454927 hasConceptScore W4385454927C33923547 @default.
- W4385454927 hasConceptScore W4385454927C41008148 @default.