Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385454977> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4385454977 endingPage "3818" @default.
- W4385454977 startingPage "3818" @default.
- W4385454977 abstract "Shipborne high-frequency surface wave radar (HFSWR) has a wide range of applications and plays an important role in moving target detection and tracking. However, the complexity of the sea detection environment causes the target signals received by shipborne HFSWR to be seriously disturbed by sea clutter. Sea clutter increases the difficulty of azimuth estimation, resulting in a challenging problem for shipborne HFSWR. To solve this problem, a novel azimuth correction method based on adaptive boosting error feedback dynamic weighted particle swarm optimization extreme learning machine (APO-ELM) is proposed to improve the azimuth estimation accuracy of shipborne HFSWR. First, the sea clutter is modeled and simulated. Then, we study its characteristics and analyze the influence of its characteristics on the first-order clutter spectrum and target detection accuracy, respectively. In addition, the proposed improved particle swarm optimization (PSO) and adaptive neuron clipping algorithm are used to optimize the input parameters of the ELM network. Then, the network performs error feedback based on the optimized parameter performance and updates the feature matrix, which can give a minimum clutter-error estimation. After that, it iteratively trains multiple weak learners using the adaptive boosting (AdaBoost) algorithm to form a strong learner and make strong predictions. Finally, after error compensation, the best azimuth estimation results are obtained. The sample sets used for the APO-ELM network are obtained from field shipborne HFSWR data. The network training and testing features include the wind direction, sea current, wind speed, platform speed, and signal-to-clutter ratio (SCR). The experimental results show that this method has a lower root-mean-square error than the back-propagation neural network and support vector regression (SVR) azimuth correction methods, which verifies the effectiveness of the proposed method." @default.
- W4385454977 created "2023-08-02" @default.
- W4385454977 creator A5005423985 @default.
- W4385454977 creator A5020809914 @default.
- W4385454977 creator A5032404324 @default.
- W4385454977 creator A5068097497 @default.
- W4385454977 date "2023-07-31" @default.
- W4385454977 modified "2023-10-14" @default.
- W4385454977 title "APO-ELM Model for Improving Azimuth Correction of Shipborne HFSWR" @default.
- W4385454977 cites W1988790447 @default.
- W4385454977 cites W2004529474 @default.
- W4385454977 cites W2035009069 @default.
- W4385454977 cites W2040270230 @default.
- W4385454977 cites W2040307875 @default.
- W4385454977 cites W2043075031 @default.
- W4385454977 cites W2045268003 @default.
- W4385454977 cites W2062350618 @default.
- W4385454977 cites W2136889516 @default.
- W4385454977 cites W2138998344 @default.
- W4385454977 cites W2141695047 @default.
- W4385454977 cites W2162654459 @default.
- W4385454977 cites W2288525324 @default.
- W4385454977 cites W2519449305 @default.
- W4385454977 cites W2537392048 @default.
- W4385454977 cites W2762269975 @default.
- W4385454977 cites W2890601815 @default.
- W4385454977 cites W2897361856 @default.
- W4385454977 cites W3003483251 @default.
- W4385454977 cites W3088969403 @default.
- W4385454977 cites W3110972854 @default.
- W4385454977 cites W3123494320 @default.
- W4385454977 cites W3153765960 @default.
- W4385454977 cites W3162835040 @default.
- W4385454977 cites W3201419862 @default.
- W4385454977 cites W4200194059 @default.
- W4385454977 cites W4210782147 @default.
- W4385454977 doi "https://doi.org/10.3390/rs15153818" @default.
- W4385454977 hasPublicationYear "2023" @default.
- W4385454977 type Work @default.
- W4385454977 citedByCount "0" @default.
- W4385454977 crossrefType "journal-article" @default.
- W4385454977 hasAuthorship W4385454977A5005423985 @default.
- W4385454977 hasAuthorship W4385454977A5020809914 @default.
- W4385454977 hasAuthorship W4385454977A5032404324 @default.
- W4385454977 hasAuthorship W4385454977A5068097497 @default.
- W4385454977 hasBestOaLocation W43854549771 @default.
- W4385454977 hasConcept C11413529 @default.
- W4385454977 hasConcept C132094186 @default.
- W4385454977 hasConcept C154945302 @default.
- W4385454977 hasConcept C159737794 @default.
- W4385454977 hasConcept C2524010 @default.
- W4385454977 hasConcept C33923547 @default.
- W4385454977 hasConcept C41008148 @default.
- W4385454977 hasConcept C554190296 @default.
- W4385454977 hasConcept C76155785 @default.
- W4385454977 hasConceptScore W4385454977C11413529 @default.
- W4385454977 hasConceptScore W4385454977C132094186 @default.
- W4385454977 hasConceptScore W4385454977C154945302 @default.
- W4385454977 hasConceptScore W4385454977C159737794 @default.
- W4385454977 hasConceptScore W4385454977C2524010 @default.
- W4385454977 hasConceptScore W4385454977C33923547 @default.
- W4385454977 hasConceptScore W4385454977C41008148 @default.
- W4385454977 hasConceptScore W4385454977C554190296 @default.
- W4385454977 hasConceptScore W4385454977C76155785 @default.
- W4385454977 hasFunder F4320321001 @default.
- W4385454977 hasIssue "15" @default.
- W4385454977 hasLocation W43854549771 @default.
- W4385454977 hasOpenAccess W4385454977 @default.
- W4385454977 hasPrimaryLocation W43854549771 @default.
- W4385454977 hasRelatedWork W1485101530 @default.
- W4385454977 hasRelatedWork W1876899919 @default.
- W4385454977 hasRelatedWork W1991740905 @default.
- W4385454977 hasRelatedWork W1993072755 @default.
- W4385454977 hasRelatedWork W1995837975 @default.
- W4385454977 hasRelatedWork W2081270319 @default.
- W4385454977 hasRelatedWork W2108762865 @default.
- W4385454977 hasRelatedWork W2114177545 @default.
- W4385454977 hasRelatedWork W2331964324 @default.
- W4385454977 hasRelatedWork W2357365693 @default.
- W4385454977 hasVolume "15" @default.
- W4385454977 isParatext "false" @default.
- W4385454977 isRetracted "false" @default.
- W4385454977 workType "article" @default.