Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385456262> ?p ?o ?g. }
- W4385456262 endingPage "1133" @default.
- W4385456262 startingPage "1115" @default.
- W4385456262 abstract "The design of network-wide traffic management schemes or transport policies for urban areas requires computationally efficient traffic models. The macroscopic fundamental diagram (MFD) is a promising tool for such applications. Unfortunately, empirical MFDs are not always available, and semi-analytical estimation methods require a reduction of the network to a corridor that introduces substantial inaccuracies. We propose a semi-analytical methodology to estimate the MFD for realistic urban networks without the information loss induced by the reduction of networks to corridors. The methodology is based on the method of cuts but applies to networks with irregular topologies, accounts for different spatial demand patterns, and determines the upper bound of network flow. Therefore, we consider both flow conservation and the effects of spillbacks at the network level. Our framework decomposes a given network into a set of corridors, creates a hypernetwork, including the impacts of source terms, and then treats the dependencies across corridors (e.g., because of turning flows and spillbacks). Based on this hypernetwork, we derive the free-flow and capacity branch of the MFD. The congested branch is estimated by considering gridlock characteristics and utilizing recent advancements in MFD research. We showcase the applicability of the proposed methodology in a case study with a realistic setting based on the Sioux Falls network. We then compare the results to the original method of cuts and a ground truth derived from the cell transmission model. This comparison reveals that our method is more than five times more accurate than the state of the art in estimating the network-wide capacity and jam density. Moreover, the results clearly indicate the MFD’s dependency on spatial demand patterns. Compared with simulation-based MFD estimation approaches, the potential of the proposed framework lies in the modeling flexibility, explanatory value, and reduced computational cost. Funding: G. Tilg acknowledges support from the German Federal Ministry for Digital and Transport (BMDV) for the funding of the project LSS (capacity increase of urban networks). S. F. A. Batista and M. Menéndez acknowledge support from the NYUAD Center for Interacting Urban Networks (CITIES), funded by Tamkeen under the NYUAD Research Institute Award [CG001]. L. Ambühl acknowledges support from the ETH Research Grant [ETH-27 16-1] under the project name SPEED. L. Leclercq acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program [Grant 646592 - MAGnUMproject]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2022.0402 ." @default.
- W4385456262 created "2023-08-02" @default.
- W4385456262 creator A5027558488 @default.
- W4385456262 creator A5039842682 @default.
- W4385456262 creator A5059748671 @default.
- W4385456262 creator A5065690575 @default.
- W4385456262 creator A5073812608 @default.
- W4385456262 creator A5090495228 @default.
- W4385456262 date "2023-09-01" @default.
- W4385456262 modified "2023-09-23" @default.
- W4385456262 title "From Corridor to Network Macroscopic Fundamental Diagrams: A Semi-Analytical Approximation Approach" @default.
- W4385456262 cites W1718078272 @default.
- W4385456262 cites W1999241827 @default.
- W4385456262 cites W2009485311 @default.
- W4385456262 cites W2027062751 @default.
- W4385456262 cites W2032549372 @default.
- W4385456262 cites W2032668704 @default.
- W4385456262 cites W2037141248 @default.
- W4385456262 cites W2043530786 @default.
- W4385456262 cites W2046899724 @default.
- W4385456262 cites W2049018511 @default.
- W4385456262 cites W2059447384 @default.
- W4385456262 cites W2074951980 @default.
- W4385456262 cites W2086376232 @default.
- W4385456262 cites W2086662759 @default.
- W4385456262 cites W2087871596 @default.
- W4385456262 cites W2095169757 @default.
- W4385456262 cites W2102805587 @default.
- W4385456262 cites W2106568907 @default.
- W4385456262 cites W2130627446 @default.
- W4385456262 cites W2135266148 @default.
- W4385456262 cites W2142013996 @default.
- W4385456262 cites W2164863800 @default.
- W4385456262 cites W2336619185 @default.
- W4385456262 cites W2346021818 @default.
- W4385456262 cites W2562365193 @default.
- W4385456262 cites W2618535478 @default.
- W4385456262 cites W2749594142 @default.
- W4385456262 cites W2900448968 @default.
- W4385456262 cites W2955624067 @default.
- W4385456262 cites W2981451706 @default.
- W4385456262 cites W2983172253 @default.
- W4385456262 cites W2996388770 @default.
- W4385456262 cites W3005915985 @default.
- W4385456262 cites W3041328062 @default.
- W4385456262 cites W3134808006 @default.
- W4385456262 cites W3160181962 @default.
- W4385456262 cites W3181710302 @default.
- W4385456262 cites W3195024499 @default.
- W4385456262 cites W4229010191 @default.
- W4385456262 cites W4283769214 @default.
- W4385456262 cites W939319017 @default.
- W4385456262 doi "https://doi.org/10.1287/trsc.2022.0402" @default.
- W4385456262 hasPublicationYear "2023" @default.
- W4385456262 type Work @default.
- W4385456262 citedByCount "0" @default.
- W4385456262 crossrefType "journal-article" @default.
- W4385456262 hasAuthorship W4385456262A5027558488 @default.
- W4385456262 hasAuthorship W4385456262A5039842682 @default.
- W4385456262 hasAuthorship W4385456262A5059748671 @default.
- W4385456262 hasAuthorship W4385456262A5065690575 @default.
- W4385456262 hasAuthorship W4385456262A5073812608 @default.
- W4385456262 hasAuthorship W4385456262A5090495228 @default.
- W4385456262 hasConcept C111335779 @default.
- W4385456262 hasConcept C111919701 @default.
- W4385456262 hasConcept C114563136 @default.
- W4385456262 hasConcept C114809511 @default.
- W4385456262 hasConcept C119599485 @default.
- W4385456262 hasConcept C126255220 @default.
- W4385456262 hasConcept C127413603 @default.
- W4385456262 hasConcept C134306372 @default.
- W4385456262 hasConcept C139417690 @default.
- W4385456262 hasConcept C177264268 @default.
- W4385456262 hasConcept C17744445 @default.
- W4385456262 hasConcept C186399060 @default.
- W4385456262 hasConcept C199360897 @default.
- W4385456262 hasConcept C199539241 @default.
- W4385456262 hasConcept C199845137 @default.
- W4385456262 hasConcept C207512268 @default.
- W4385456262 hasConcept C22212356 @default.
- W4385456262 hasConcept C2524010 @default.
- W4385456262 hasConcept C2778558725 @default.
- W4385456262 hasConcept C2779888511 @default.
- W4385456262 hasConcept C31258907 @default.
- W4385456262 hasConcept C32946077 @default.
- W4385456262 hasConcept C33923547 @default.
- W4385456262 hasConcept C38349280 @default.
- W4385456262 hasConcept C38652104 @default.
- W4385456262 hasConcept C41008148 @default.
- W4385456262 hasConcept C77088390 @default.
- W4385456262 hasConcept C77553402 @default.
- W4385456262 hasConcept C94625758 @default.
- W4385456262 hasConceptScore W4385456262C111335779 @default.
- W4385456262 hasConceptScore W4385456262C111919701 @default.
- W4385456262 hasConceptScore W4385456262C114563136 @default.
- W4385456262 hasConceptScore W4385456262C114809511 @default.
- W4385456262 hasConceptScore W4385456262C119599485 @default.
- W4385456262 hasConceptScore W4385456262C126255220 @default.