Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385456870> ?p ?o ?g. }
- W4385456870 endingPage "2550" @default.
- W4385456870 startingPage "2536" @default.
- W4385456870 abstract "AbstractThis paper investigates the neural network (NN) adaptive consensus output-feedback control problem for a class of nonlinear multi-agent systems (MASs) encountered sensor attacks. To overcome the impact of unknown sensor attacks, a NN estimation algorithm is adopted to estimate the unknown sensor attacks. Subsequently, a novel NN observer is established to estimate the states of encountered sensor attacks. Consequently, under the framework of backstepping control design, an adaptive NN consensus control method is proposed. By using the Lyapunov stability theory, the proposed consensus control method can not only ensure that all the signals of controlled MASs remain bounded, but also make all followers maintain consensus with the trajectory of the leader. Simulation results and comparative results illustrate the effectiveness of the proposed consensus control scheme.Keywords: Nonlinear multi-agent systemsneural networksensor attacksadaptive consensus control Data availability statementData sharing is not applicable to this article as no new data were created or analysed in this study.Disclosure statementThe authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.Additional informationFundingThis work is supported by National Natural Science Foundation (NNSF) of China [grant numbers 62173172 and U22A2043.Notes on contributorsLexin ChenLexin Chen received the B.S. degree in Mathematics and Applied Mathematics from Xi'an Technological University, Xi'an, China, in 2021. She is working towards the M.E. degree in Applied Mathematics from Liaoning University of Technology, Jinzhou, China. Her research interests include adaptive control, cyber-attacks, fuzzy control and neural networks control, and the security of nonlinear cyber-physical systems.Yongming LiYongming Li (SM'16) received the B.S. degree and the M.S. degree in Applied Mathematics from Liaoning University of Technology, Jinzhou, China, in 2004 and 2007, respectively. He received the Ph. D degree in Transportation Information Engineering & Control from Dalian Maritime University, Dalian, China in 2014. He is currently a Professor in the College of Science, Liaoning University of Technology. His current research interests include adaptive control, fuzzy control and neural networks control for nonlinear systems.Shaocheng TongShaocheng Tong (SM'15) received the B.S. degree in Mathematics from Jinzhou Normal College, Jinzhou, China, the M.S. degree in Fuzzy Mathematics from Dalian Marine University, Dalian, China, and the Ph.D. degree in Fuzzy Control from the Northeastern University, Shenyang, China, in 1982, 1988 and 1997, respectively.He is currently a Professor with the College of Science, Liaoning University of Technology, Jinzhou, China. His current research interests include fuzzy and neural networks control, and nonlinear adaptive control." @default.
- W4385456870 created "2023-08-02" @default.
- W4385456870 creator A5046415026 @default.
- W4385456870 creator A5054776173 @default.
- W4385456870 creator A5067652312 @default.
- W4385456870 date "2023-08-01" @default.
- W4385456870 modified "2023-09-27" @default.
- W4385456870 title "Neural network adaptive consensus control for nonlinear multi-agent systems encountered sensor attacks" @default.
- W4385456870 cites W1970786657 @default.
- W4385456870 cites W1973184571 @default.
- W4385456870 cites W2062551655 @default.
- W4385456870 cites W2083974095 @default.
- W4385456870 cites W2133869087 @default.
- W4385456870 cites W2572224102 @default.
- W4385456870 cites W2583742612 @default.
- W4385456870 cites W2765224181 @default.
- W4385456870 cites W2886455699 @default.
- W4385456870 cites W2906103050 @default.
- W4385456870 cites W2962719293 @default.
- W4385456870 cites W2981278581 @default.
- W4385456870 cites W2987272366 @default.
- W4385456870 cites W3006642921 @default.
- W4385456870 cites W3024596785 @default.
- W4385456870 cites W3043846937 @default.
- W4385456870 cites W3049661527 @default.
- W4385456870 cites W3089441354 @default.
- W4385456870 cites W3113617473 @default.
- W4385456870 cites W3138623967 @default.
- W4385456870 cites W3149864365 @default.
- W4385456870 cites W3154772134 @default.
- W4385456870 cites W3155749896 @default.
- W4385456870 cites W3195644288 @default.
- W4385456870 cites W3207200286 @default.
- W4385456870 cites W4225966165 @default.
- W4385456870 cites W4226283180 @default.
- W4385456870 cites W4378805098 @default.
- W4385456870 doi "https://doi.org/10.1080/00207721.2023.2240465" @default.
- W4385456870 hasPublicationYear "2023" @default.
- W4385456870 type Work @default.
- W4385456870 citedByCount "0" @default.
- W4385456870 crossrefType "journal-article" @default.
- W4385456870 hasAuthorship W4385456870A5046415026 @default.
- W4385456870 hasAuthorship W4385456870A5054776173 @default.
- W4385456870 hasAuthorship W4385456870A5067652312 @default.
- W4385456870 hasConcept C107464732 @default.
- W4385456870 hasConcept C121332964 @default.
- W4385456870 hasConcept C127413603 @default.
- W4385456870 hasConcept C133731056 @default.
- W4385456870 hasConcept C134306372 @default.
- W4385456870 hasConcept C154945302 @default.
- W4385456870 hasConcept C158622935 @default.
- W4385456870 hasConcept C2775924081 @default.
- W4385456870 hasConcept C2776829284 @default.
- W4385456870 hasConcept C33923547 @default.
- W4385456870 hasConcept C34388435 @default.
- W4385456870 hasConcept C41008148 @default.
- W4385456870 hasConcept C47446073 @default.
- W4385456870 hasConcept C50644808 @default.
- W4385456870 hasConcept C58166 @default.
- W4385456870 hasConcept C60640748 @default.
- W4385456870 hasConcept C62520636 @default.
- W4385456870 hasConcept C72218879 @default.
- W4385456870 hasConceptScore W4385456870C107464732 @default.
- W4385456870 hasConceptScore W4385456870C121332964 @default.
- W4385456870 hasConceptScore W4385456870C127413603 @default.
- W4385456870 hasConceptScore W4385456870C133731056 @default.
- W4385456870 hasConceptScore W4385456870C134306372 @default.
- W4385456870 hasConceptScore W4385456870C154945302 @default.
- W4385456870 hasConceptScore W4385456870C158622935 @default.
- W4385456870 hasConceptScore W4385456870C2775924081 @default.
- W4385456870 hasConceptScore W4385456870C2776829284 @default.
- W4385456870 hasConceptScore W4385456870C33923547 @default.
- W4385456870 hasConceptScore W4385456870C34388435 @default.
- W4385456870 hasConceptScore W4385456870C41008148 @default.
- W4385456870 hasConceptScore W4385456870C47446073 @default.
- W4385456870 hasConceptScore W4385456870C50644808 @default.
- W4385456870 hasConceptScore W4385456870C58166 @default.
- W4385456870 hasConceptScore W4385456870C60640748 @default.
- W4385456870 hasConceptScore W4385456870C62520636 @default.
- W4385456870 hasConceptScore W4385456870C72218879 @default.
- W4385456870 hasFunder F4320321001 @default.
- W4385456870 hasIssue "12" @default.
- W4385456870 hasLocation W43854568701 @default.
- W4385456870 hasOpenAccess W4385456870 @default.
- W4385456870 hasPrimaryLocation W43854568701 @default.
- W4385456870 hasRelatedWork W1647120688 @default.
- W4385456870 hasRelatedWork W1967964192 @default.
- W4385456870 hasRelatedWork W2169531797 @default.
- W4385456870 hasRelatedWork W2170426841 @default.
- W4385456870 hasRelatedWork W2290047169 @default.
- W4385456870 hasRelatedWork W2392593996 @default.
- W4385456870 hasRelatedWork W2794899516 @default.
- W4385456870 hasRelatedWork W2902678192 @default.
- W4385456870 hasRelatedWork W4382936212 @default.
- W4385456870 hasRelatedWork W2172432712 @default.
- W4385456870 hasVolume "54" @default.
- W4385456870 isParatext "false" @default.
- W4385456870 isRetracted "false" @default.