Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385458312> ?p ?o ?g. }
- W4385458312 abstract "Results from randomized controlled trials indicate that no single diet performs better than other for all people living with obesity. Regardless of the diet plan, there is always large inter-individual variability in weight changes, with some individuals losing weight and some not losing or even gaining weight. This raises the possibility that, for different individuals, the optimal diet for successful weight loss may differ. The current study utilized machine learning to build a predictive model for successful weight loss in subjects with overweight or obesity on a New Nordic Diet (NND).Ninety-one subjects consumed an NND ad libitum for 26 weeks. Based on their weight loss, individuals were classified as responders (weight loss ≥5%, n = 46) or non-responders (weight loss <2%, n = 24). We used clinical baseline data combined with baseline urine and plasma untargeted metabolomics data from two different analytical platforms, resulting in a data set including 2,766 features, and employed symbolic regression (QLattice) to develop a predictive model for weight loss success.There were no differences in clinical parameters at baseline between responders and non-responders, except age (47 ± 13 vs. 39 ± 11 years, respectively, p = 0.009). The final predictive model for weight loss contained adipic acid and argininic acid from urine (both metabolites were found at lower levels in responders) and generalized from the training (AUC 0.88) to the test set (AUC 0.81). Responders were also able to maintain a weight loss of 4.3% in a 12 month follow-up period.We identified a model containing two metabolites that were able to predict the likelihood of achieving a clinically significant weight loss on an ad libitum NND. This work demonstrates that models based on an untargeted multi-platform metabolomics approach can be used to optimize precision dietary treatment for obesity." @default.
- W4385458312 created "2023-08-02" @default.
- W4385458312 creator A5001113261 @default.
- W4385458312 creator A5007037297 @default.
- W4385458312 creator A5023292900 @default.
- W4385458312 creator A5025629360 @default.
- W4385458312 creator A5035293496 @default.
- W4385458312 creator A5044434358 @default.
- W4385458312 creator A5054416817 @default.
- W4385458312 creator A5060208736 @default.
- W4385458312 creator A5074291379 @default.
- W4385458312 creator A5091030726 @default.
- W4385458312 creator A5092576089 @default.
- W4385458312 date "2023-08-01" @default.
- W4385458312 modified "2023-09-25" @default.
- W4385458312 title "Predicting weight loss success on a new Nordic diet: an untargeted multi-platform metabolomics and machine learning approach" @default.
- W4385458312 cites W143096088 @default.
- W4385458312 cites W1480157812 @default.
- W4385458312 cites W1490331581 @default.
- W4385458312 cites W1537061840 @default.
- W4385458312 cites W1611854178 @default.
- W4385458312 cites W1627531967 @default.
- W4385458312 cites W1922359108 @default.
- W4385458312 cites W1964010911 @default.
- W4385458312 cites W1966365570 @default.
- W4385458312 cites W1972326413 @default.
- W4385458312 cites W1976510301 @default.
- W4385458312 cites W1979223553 @default.
- W4385458312 cites W2020592456 @default.
- W4385458312 cites W2028251957 @default.
- W4385458312 cites W2028589916 @default.
- W4385458312 cites W2035407963 @default.
- W4385458312 cites W2038961236 @default.
- W4385458312 cites W2046322985 @default.
- W4385458312 cites W2057427073 @default.
- W4385458312 cites W2064415564 @default.
- W4385458312 cites W2069313484 @default.
- W4385458312 cites W2087285715 @default.
- W4385458312 cites W2087481249 @default.
- W4385458312 cites W2089342771 @default.
- W4385458312 cites W2091177558 @default.
- W4385458312 cites W2096525341 @default.
- W4385458312 cites W2099931188 @default.
- W4385458312 cites W2103862350 @default.
- W4385458312 cites W2103916483 @default.
- W4385458312 cites W2133795831 @default.
- W4385458312 cites W2141662760 @default.
- W4385458312 cites W2142931933 @default.
- W4385458312 cites W2144376568 @default.
- W4385458312 cites W2149160634 @default.
- W4385458312 cites W2160234571 @default.
- W4385458312 cites W2160489098 @default.
- W4385458312 cites W2167407057 @default.
- W4385458312 cites W2283809486 @default.
- W4385458312 cites W2322305298 @default.
- W4385458312 cites W2603388877 @default.
- W4385458312 cites W2607031541 @default.
- W4385458312 cites W2752746139 @default.
- W4385458312 cites W2774152311 @default.
- W4385458312 cites W2807614902 @default.
- W4385458312 cites W2889744161 @default.
- W4385458312 cites W2902419609 @default.
- W4385458312 cites W2917520831 @default.
- W4385458312 cites W3006030530 @default.
- W4385458312 cites W3006566265 @default.
- W4385458312 cites W3025372242 @default.
- W4385458312 cites W3026931015 @default.
- W4385458312 cites W3036869815 @default.
- W4385458312 cites W3152705473 @default.
- W4385458312 cites W3161094660 @default.
- W4385458312 cites W4200610845 @default.
- W4385458312 cites W4206679182 @default.
- W4385458312 cites W4211085285 @default.
- W4385458312 cites W4247143732 @default.
- W4385458312 cites W4283322134 @default.
- W4385458312 cites W4287378307 @default.
- W4385458312 cites W4294326454 @default.
- W4385458312 cites W4380681157 @default.
- W4385458312 cites W53234553 @default.
- W4385458312 doi "https://doi.org/10.3389/fnut.2023.1191944" @default.
- W4385458312 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37599689" @default.
- W4385458312 hasPublicationYear "2023" @default.
- W4385458312 type Work @default.
- W4385458312 citedByCount "0" @default.
- W4385458312 crossrefType "journal-article" @default.
- W4385458312 hasAuthorship W4385458312A5001113261 @default.
- W4385458312 hasAuthorship W4385458312A5007037297 @default.
- W4385458312 hasAuthorship W4385458312A5023292900 @default.
- W4385458312 hasAuthorship W4385458312A5025629360 @default.
- W4385458312 hasAuthorship W4385458312A5035293496 @default.
- W4385458312 hasAuthorship W4385458312A5044434358 @default.
- W4385458312 hasAuthorship W4385458312A5054416817 @default.
- W4385458312 hasAuthorship W4385458312A5060208736 @default.
- W4385458312 hasAuthorship W4385458312A5074291379 @default.
- W4385458312 hasAuthorship W4385458312A5091030726 @default.
- W4385458312 hasAuthorship W4385458312A5092576089 @default.
- W4385458312 hasBestOaLocation W43854583121 @default.
- W4385458312 hasConcept C119857082 @default.
- W4385458312 hasConcept C126322002 @default.
- W4385458312 hasConcept C21565614 @default.