Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385458541> ?p ?o ?g. }
- W4385458541 endingPage "753" @default.
- W4385458541 startingPage "737" @default.
- W4385458541 abstract "ABSTRACTThe increasing energy demand has significantly improved solar photovoltaic (SPV) systems as a distributed energy source. Real-time control of SPV performance is vital for accurate solar power (SP) prediction. The article proposes an ensemble Machine Learning Approach (MLA) called Random Forest Algorithm-Based Regression Model (RFARM) for hourly forecasting of SP. The approach selectively analyzes meteorological and solar irradiance data (SI) to enhance short-term solar panel prediction. It focuses on employing a correlation-based approach using an RFA with regression to achieve improved SP prediction accuracy. The study compares the PV power generated at Thiagarajar College of Engineering (TCE), Madurai, using four prediction techniques: Artificial Neural Networks (ANN), Random Forest (RF), K-Nearest Neighbours (KNN), and Support Vector Machine (SVM) along with a proposed RFARM for different meteorological weather conditions over a 24-hour time horizon. The proposed RFARM method achieves high prediction accuracy by selecting significant parameters, avoiding artificial filtering, and minimizing errors, particularly in predicting solar output during cloud shading. The RFARM model outperforms conventional methods in predicting the daily curve of solar power performance. It achieves an RMSE of 1.52, MAE of 14, and R-squared of 98%. Feature selection further improves accuracy, reducing RMSE by 12.5% and MAE by 17.2% respectively.CO EDITOR-IN-CHIEF: Kuo, Cheng-ChienASSOCIATE EDITOR: Kuo, Cheng-ChienKEYWORDS: Solar photovoltaic (SPV)predictionmachine learning (MLA)ANNRFARMRFKNNSVMfeature selective technique Nomenclature AC=Alternating currentANFIS=Adaptive Neuro-Fuzzy Inference SystemANN=Artificial Neural NetworksAT=Atmosphere TemperatureBI=Beam Irradiance (W/m2)CT=Cell Temperature (C)D=DayDC=Direct currentDI=Diffuse Irradiance (W/m2)DL=Deep LearningDPP=Data Pre-ProcessingDR=Demand responseDSM=Demand Side ManagementH=HourKNN=K-Nearest NeighboursLRM=Linear Regression ModelLsSVR=Least square Support Vector RegressionM=MonthMAE=Mean Absolute ErrorMAPE=Mean Absolute Percentage ErrorMLA=Machine Learning AlgorithmMSE=Mean Squared ErrorMVR=Multivariate regression modelPA=Plane of Array Irradiance (W/m2)PV=PhotovoltaicRF=Random ForestRFARM=Random Forest Algorithm-Based Regression ModelRMSE=Root Mean Square ErrorSI=Solar irradianceSP=Solar PowerSVM=Support Vector MachineTCE=Thiagarajar College Of EngineeringVIF=Variance Inflation FactorWS=Wind Speed (m/s)AcknowledgmentsThis research has been made possible by the Department of Electrical and Electronics Engineering, TCE, Madurai, which has provided all the necessary data, and I wish to express my sincere thanks to the administration and the staff.Disclosure statementNo potential conflict of interest was reported by the author(s).Correction StatementThis article has been corrected with minor changes. These changes do not impact the academic content of the article." @default.
- W4385458541 created "2023-08-02" @default.
- W4385458541 creator A5021544793 @default.
- W4385458541 creator A5075768701 @default.
- W4385458541 date "2023-08-01" @default.
- W4385458541 modified "2023-09-27" @default.
- W4385458541 title "An ensemble machine learning-based solar power prediction of meteorological variability conditions to improve accuracy in forecasting" @default.
- W4385458541 cites W1991277158 @default.
- W4385458541 cites W2027714582 @default.
- W4385458541 cites W2028782916 @default.
- W4385458541 cites W2567511014 @default.
- W4385458541 cites W2587088850 @default.
- W4385458541 cites W2751698537 @default.
- W4385458541 cites W2761113113 @default.
- W4385458541 cites W2772069281 @default.
- W4385458541 cites W2795114469 @default.
- W4385458541 cites W2799581641 @default.
- W4385458541 cites W2803160193 @default.
- W4385458541 cites W2806583606 @default.
- W4385458541 cites W2884486887 @default.
- W4385458541 cites W2912623183 @default.
- W4385458541 cites W2917491574 @default.
- W4385458541 cites W2940100101 @default.
- W4385458541 cites W2943083660 @default.
- W4385458541 cites W2945748599 @default.
- W4385458541 cites W2956971290 @default.
- W4385458541 cites W2961224696 @default.
- W4385458541 cites W2964321282 @default.
- W4385458541 cites W2993977851 @default.
- W4385458541 cites W3020381798 @default.
- W4385458541 cites W3021727993 @default.
- W4385458541 cites W3022260068 @default.
- W4385458541 cites W3034272367 @default.
- W4385458541 cites W3040474589 @default.
- W4385458541 cites W3048448847 @default.
- W4385458541 cites W3075674906 @default.
- W4385458541 cites W3085344189 @default.
- W4385458541 cites W3086063052 @default.
- W4385458541 cites W3089230449 @default.
- W4385458541 cites W3109485317 @default.
- W4385458541 cites W3110443213 @default.
- W4385458541 cites W3121939824 @default.
- W4385458541 cites W3136084353 @default.
- W4385458541 cites W3138887381 @default.
- W4385458541 cites W3141826944 @default.
- W4385458541 cites W3157887335 @default.
- W4385458541 cites W3176355213 @default.
- W4385458541 doi "https://doi.org/10.1080/02533839.2023.2238777" @default.
- W4385458541 hasPublicationYear "2023" @default.
- W4385458541 type Work @default.
- W4385458541 citedByCount "0" @default.
- W4385458541 crossrefType "journal-article" @default.
- W4385458541 hasAuthorship W4385458541A5021544793 @default.
- W4385458541 hasAuthorship W4385458541A5075768701 @default.
- W4385458541 hasConcept C105795698 @default.
- W4385458541 hasConcept C119599485 @default.
- W4385458541 hasConcept C119857082 @default.
- W4385458541 hasConcept C12267149 @default.
- W4385458541 hasConcept C127413603 @default.
- W4385458541 hasConcept C139945424 @default.
- W4385458541 hasConcept C153294291 @default.
- W4385458541 hasConcept C154945302 @default.
- W4385458541 hasConcept C169258074 @default.
- W4385458541 hasConcept C205649164 @default.
- W4385458541 hasConcept C33923547 @default.
- W4385458541 hasConcept C41008148 @default.
- W4385458541 hasConcept C41291067 @default.
- W4385458541 hasConcept C50644808 @default.
- W4385458541 hasConcept C541104983 @default.
- W4385458541 hasConcept C9695528 @default.
- W4385458541 hasConceptScore W4385458541C105795698 @default.
- W4385458541 hasConceptScore W4385458541C119599485 @default.
- W4385458541 hasConceptScore W4385458541C119857082 @default.
- W4385458541 hasConceptScore W4385458541C12267149 @default.
- W4385458541 hasConceptScore W4385458541C127413603 @default.
- W4385458541 hasConceptScore W4385458541C139945424 @default.
- W4385458541 hasConceptScore W4385458541C153294291 @default.
- W4385458541 hasConceptScore W4385458541C154945302 @default.
- W4385458541 hasConceptScore W4385458541C169258074 @default.
- W4385458541 hasConceptScore W4385458541C205649164 @default.
- W4385458541 hasConceptScore W4385458541C33923547 @default.
- W4385458541 hasConceptScore W4385458541C41008148 @default.
- W4385458541 hasConceptScore W4385458541C41291067 @default.
- W4385458541 hasConceptScore W4385458541C50644808 @default.
- W4385458541 hasConceptScore W4385458541C541104983 @default.
- W4385458541 hasConceptScore W4385458541C9695528 @default.
- W4385458541 hasIssue "7" @default.
- W4385458541 hasLocation W43854585411 @default.
- W4385458541 hasOpenAccess W4385458541 @default.
- W4385458541 hasPrimaryLocation W43854585411 @default.
- W4385458541 hasRelatedWork W1996541855 @default.
- W4385458541 hasRelatedWork W2985924212 @default.
- W4385458541 hasRelatedWork W3195168932 @default.
- W4385458541 hasRelatedWork W3195610867 @default.
- W4385458541 hasRelatedWork W4308191010 @default.
- W4385458541 hasRelatedWork W4321636153 @default.
- W4385458541 hasRelatedWork W4327511089 @default.
- W4385458541 hasRelatedWork W4362680528 @default.