Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385462083> ?p ?o ?g. }
- W4385462083 endingPage "6500" @default.
- W4385462083 startingPage "6485" @default.
- W4385462083 abstract "The process of partitioning into different objects of an image is segmentation. In different major fields like face tracking, Satellite, Object Identification, Remote Sensing and majorly in medical field segmentation process is very important to find the different objects in the image. To investigate the functions and processes of human boy in radiology magnetic resonance imaging (MRI) will be used. MRI technique is using in many hospitals for the diagnosis purpose widely in finding the stage of a particular disease. In this paper, we proposed a new method for detecting the tumor with enhanced performance over traditional techniques such as K-Means Clustering, fuzzy c means (FCM). Different research methods have been proposed by researchers to detect the tumor in brain. To classify normal and abnormal form of brain, a system for screening is discussed in this paper which is developed with a framework of artificial intelligence with deep learning probabilistic neural networks by focusing on hybrid clustering for segmentation on brain image and crystal contrast enhancement. Feature’s extraction and classification are included in the developing process. Performance in Simulation of proposed design has shown the superior results than the traditional methods." @default.
- W4385462083 created "2023-08-02" @default.
- W4385462083 creator A5010297918 @default.
- W4385462083 creator A5021815729 @default.
- W4385462083 creator A5025925474 @default.
- W4385462083 creator A5029916483 @default.
- W4385462083 creator A5048170327 @default.
- W4385462083 creator A5056922324 @default.
- W4385462083 creator A5058384307 @default.
- W4385462083 creator A5067014331 @default.
- W4385462083 date "2023-10-04" @default.
- W4385462083 modified "2023-10-09" @default.
- W4385462083 title "Brain tumor segmentation and classification with hybrid clustering, probabilistic neural networks" @default.
- W4385462083 cites W1495665853 @default.
- W4385462083 cites W1536266814 @default.
- W4385462083 cites W1588806154 @default.
- W4385462083 cites W1972098431 @default.
- W4385462083 cites W2002659820 @default.
- W4385462083 cites W2063131317 @default.
- W4385462083 cites W2109224747 @default.
- W4385462083 cites W2113131123 @default.
- W4385462083 cites W2117553021 @default.
- W4385462083 cites W2135705692 @default.
- W4385462083 cites W2137050582 @default.
- W4385462083 cites W2158800416 @default.
- W4385462083 cites W2403729827 @default.
- W4385462083 cites W2610758556 @default.
- W4385462083 cites W2613696505 @default.
- W4385462083 cites W2735947739 @default.
- W4385462083 cites W2765490497 @default.
- W4385462083 cites W2767140395 @default.
- W4385462083 cites W2772670363 @default.
- W4385462083 cites W2782920681 @default.
- W4385462083 cites W2791566664 @default.
- W4385462083 cites W2899333919 @default.
- W4385462083 cites W2909533222 @default.
- W4385462083 cites W2911155111 @default.
- W4385462083 cites W2921483513 @default.
- W4385462083 cites W2946194997 @default.
- W4385462083 cites W2955805844 @default.
- W4385462083 cites W2964194498 @default.
- W4385462083 cites W2964330706 @default.
- W4385462083 cites W2966076645 @default.
- W4385462083 cites W2969326038 @default.
- W4385462083 cites W2984619469 @default.
- W4385462083 cites W2986352385 @default.
- W4385462083 cites W2994715578 @default.
- W4385462083 cites W3011430986 @default.
- W4385462083 cites W3013952416 @default.
- W4385462083 cites W3017969688 @default.
- W4385462083 cites W3033449993 @default.
- W4385462083 cites W3046972687 @default.
- W4385462083 cites W3047166296 @default.
- W4385462083 cites W3049752087 @default.
- W4385462083 cites W3082276753 @default.
- W4385462083 cites W3082722549 @default.
- W4385462083 cites W3083692688 @default.
- W4385462083 cites W3084741591 @default.
- W4385462083 cites W3105505025 @default.
- W4385462083 cites W3106310598 @default.
- W4385462083 cites W3106435750 @default.
- W4385462083 cites W3108626180 @default.
- W4385462083 cites W3110344656 @default.
- W4385462083 cites W3118656209 @default.
- W4385462083 cites W3127167602 @default.
- W4385462083 cites W3136979370 @default.
- W4385462083 cites W3169587585 @default.
- W4385462083 cites W3176598563 @default.
- W4385462083 cites W3198503790 @default.
- W4385462083 cites W4312292395 @default.
- W4385462083 cites W4362653758 @default.
- W4385462083 doi "https://doi.org/10.3233/jifs-232493" @default.
- W4385462083 hasPublicationYear "2023" @default.
- W4385462083 type Work @default.
- W4385462083 citedByCount "0" @default.
- W4385462083 crossrefType "journal-article" @default.
- W4385462083 hasAuthorship W4385462083A5010297918 @default.
- W4385462083 hasAuthorship W4385462083A5021815729 @default.
- W4385462083 hasAuthorship W4385462083A5025925474 @default.
- W4385462083 hasAuthorship W4385462083A5029916483 @default.
- W4385462083 hasAuthorship W4385462083A5048170327 @default.
- W4385462083 hasAuthorship W4385462083A5056922324 @default.
- W4385462083 hasAuthorship W4385462083A5058384307 @default.
- W4385462083 hasAuthorship W4385462083A5067014331 @default.
- W4385462083 hasConcept C124504099 @default.
- W4385462083 hasConcept C153180895 @default.
- W4385462083 hasConcept C154945302 @default.
- W4385462083 hasConcept C17212007 @default.
- W4385462083 hasConcept C41008148 @default.
- W4385462083 hasConcept C49937458 @default.
- W4385462083 hasConcept C50644808 @default.
- W4385462083 hasConcept C52622490 @default.
- W4385462083 hasConcept C58166 @default.
- W4385462083 hasConcept C73555534 @default.
- W4385462083 hasConcept C89600930 @default.
- W4385462083 hasConceptScore W4385462083C124504099 @default.
- W4385462083 hasConceptScore W4385462083C153180895 @default.
- W4385462083 hasConceptScore W4385462083C154945302 @default.