Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385462661> ?p ?o ?g. }
- W4385462661 endingPage "108863" @default.
- W4385462661 startingPage "108863" @default.
- W4385462661 abstract "The purpose of analytic continuation is to establish a real frequency spectral representation of single-particle or two-particle correlation function (such as Green's function, self-energy function, spin and charge susceptibilities) from noisy data generated in finite temperature quantum Monte Carlo simulations. It requires numerical solutions of a family of Fredholm integral equations of the first kind, which is indeed a challenging task. In this paper, an open source toolkit (dubbed ACFlow) for analytic continuation of quantum Monte Carlo data is presented. We at first give a short introduction to the analytic continuation problem. Next, three popular analytic continuation algorithms, including the maximum entropy method, the stochastic analytic continuation, and the stochastic optimization method, as implemented in this toolkit are reviewed. And then we elaborate major features, implementation details, basic usage, inputs and outputs of this toolkit. Finally, four representative examples, including analytic continuations of Matsubara self-energy function, Matsubara and imaginary time Green's functions, and current-current correlation function, are shown to demonstrate usefulness and flexibility of the ACFlow toolkit. Program Title: ACFlow CPC Library link to program files: https://doi.org/10.17632/th6w74gwjm.1 Developer's repository link: https://github.com/huangli712/ACFlow Licensing provisions: GNU General Public License Version 3 Programming language: Julia Nature of problem: Most of the quantum Monte Carlo methods work on imaginary axis. In order to extract physical observables and compare them with the experimental results, analytic continuation must be done in the post-processing stage to convert the quantum Monte Carlo simulated data from imaginary axis to real axis. Solution method: Three well-established analytic continuation methods, including the maximum entropy method, the stochastic analytic continuation (both A. W. Sandvik's and K. S. D. Beach's algorithms), and the stochastic optimization method, have been implemented in the ACFlow toolkit. Additional comments including restrictions and unusual features: The ACFlow toolkit is written by pure Julia language. It is highly optimized and parallelized. It can be executed interactively in a Jupyter notebook environment." @default.
- W4385462661 created "2023-08-02" @default.
- W4385462661 creator A5071231802 @default.
- W4385462661 date "2023-11-01" @default.
- W4385462661 modified "2023-10-16" @default.
- W4385462661 title "ACFlow: An open source toolkit for analytic continuation of quantum Monte Carlo data" @default.
- W4385462661 cites W1539241585 @default.
- W4385462661 cites W1543336621 @default.
- W4385462661 cites W1719131848 @default.
- W4385462661 cites W1965326854 @default.
- W4385462661 cites W1972810488 @default.
- W4385462661 cites W1978209339 @default.
- W4385462661 cites W1988150410 @default.
- W4385462661 cites W1999292484 @default.
- W4385462661 cites W2001947750 @default.
- W4385462661 cites W2006455887 @default.
- W4385462661 cites W2006773827 @default.
- W4385462661 cites W2013697271 @default.
- W4385462661 cites W2024060531 @default.
- W4385462661 cites W2026370413 @default.
- W4385462661 cites W2032317411 @default.
- W4385462661 cites W2040793946 @default.
- W4385462661 cites W2047407330 @default.
- W4385462661 cites W2071142504 @default.
- W4385462661 cites W2072808339 @default.
- W4385462661 cites W2080846398 @default.
- W4385462661 cites W2085176113 @default.
- W4385462661 cites W2092557791 @default.
- W4385462661 cites W2112940941 @default.
- W4385462661 cites W2149739919 @default.
- W4385462661 cites W2169740476 @default.
- W4385462661 cites W2243107137 @default.
- W4385462661 cites W2245169276 @default.
- W4385462661 cites W2419266825 @default.
- W4385462661 cites W2511289118 @default.
- W4385462661 cites W2606574146 @default.
- W4385462661 cites W2756291233 @default.
- W4385462661 cites W2775468117 @default.
- W4385462661 cites W2887052089 @default.
- W4385462661 cites W2894980093 @default.
- W4385462661 cites W2969394471 @default.
- W4385462661 cites W2970821818 @default.
- W4385462661 cites W2993140671 @default.
- W4385462661 cites W3014414238 @default.
- W4385462661 cites W3022043600 @default.
- W4385462661 cites W3092435759 @default.
- W4385462661 cites W3114111546 @default.
- W4385462661 cites W3165619118 @default.
- W4385462661 cites W3178925200 @default.
- W4385462661 cites W4226089125 @default.
- W4385462661 cites W4231275396 @default.
- W4385462661 cites W4292317888 @default.
- W4385462661 cites W4312156802 @default.
- W4385462661 cites W816255669 @default.
- W4385462661 doi "https://doi.org/10.1016/j.cpc.2023.108863" @default.
- W4385462661 hasPublicationYear "2023" @default.
- W4385462661 type Work @default.
- W4385462661 citedByCount "0" @default.
- W4385462661 crossrefType "journal-article" @default.
- W4385462661 hasAuthorship W4385462661A5071231802 @default.
- W4385462661 hasBestOaLocation W43854626612 @default.
- W4385462661 hasConcept C105795698 @default.
- W4385462661 hasConcept C121332964 @default.
- W4385462661 hasConcept C121864883 @default.
- W4385462661 hasConcept C134306372 @default.
- W4385462661 hasConcept C14036430 @default.
- W4385462661 hasConcept C151602998 @default.
- W4385462661 hasConcept C16016025 @default.
- W4385462661 hasConcept C19499675 @default.
- W4385462661 hasConcept C199360897 @default.
- W4385462661 hasConcept C28826006 @default.
- W4385462661 hasConcept C33923547 @default.
- W4385462661 hasConcept C41008148 @default.
- W4385462661 hasConcept C78458016 @default.
- W4385462661 hasConcept C86803240 @default.
- W4385462661 hasConcept C88626702 @default.
- W4385462661 hasConceptScore W4385462661C105795698 @default.
- W4385462661 hasConceptScore W4385462661C121332964 @default.
- W4385462661 hasConceptScore W4385462661C121864883 @default.
- W4385462661 hasConceptScore W4385462661C134306372 @default.
- W4385462661 hasConceptScore W4385462661C14036430 @default.
- W4385462661 hasConceptScore W4385462661C151602998 @default.
- W4385462661 hasConceptScore W4385462661C16016025 @default.
- W4385462661 hasConceptScore W4385462661C19499675 @default.
- W4385462661 hasConceptScore W4385462661C199360897 @default.
- W4385462661 hasConceptScore W4385462661C28826006 @default.
- W4385462661 hasConceptScore W4385462661C33923547 @default.
- W4385462661 hasConceptScore W4385462661C41008148 @default.
- W4385462661 hasConceptScore W4385462661C78458016 @default.
- W4385462661 hasConceptScore W4385462661C86803240 @default.
- W4385462661 hasConceptScore W4385462661C88626702 @default.
- W4385462661 hasFunder F4320321001 @default.
- W4385462661 hasFunder F4320321536 @default.
- W4385462661 hasFunder F4320330553 @default.
- W4385462661 hasLocation W43854626611 @default.
- W4385462661 hasLocation W43854626612 @default.
- W4385462661 hasOpenAccess W4385462661 @default.
- W4385462661 hasPrimaryLocation W43854626611 @default.