Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385462804> ?p ?o ?g. }
- W4385462804 abstract "Context information is the key element to realizing dynamic access control of big data. However, existing context-aware access control (CAAC) methods do not support automatic context awareness and cannot automatically model and reason about context relationships. To solve these problems, this article proposes a weighted GraphSAGE-based context-aware approach for big data access control. First, graph modeling is performed on the access record data set and transforms the access control context-awareness problem into a graph neural network (GNN) node learning problem. Then, a GNN model WGraphSAGE is proposed to achieve automatic context awareness and automatic generation of CAAC rules. Finally, weighted neighbor sampling and weighted aggregation algorithms are designed for the model to realize automatic modeling and reasoning of node relationships and relationship strengths simultaneously in the graph node learning process. The experiment results show that the proposed method has obvious advantages in context awareness and context relationship reasoning compared with similar GNN models. Meanwhile, it obtains better results in dynamic access control decisions than the existing CAAC models." @default.
- W4385462804 created "2023-08-02" @default.
- W4385462804 creator A5018956655 @default.
- W4385462804 creator A5043268521 @default.
- W4385462804 creator A5046732096 @default.
- W4385462804 creator A5047645246 @default.
- W4385462804 creator A5090728786 @default.
- W4385462804 date "2023-08-01" @default.
- W4385462804 modified "2023-09-27" @default.
- W4385462804 title "A Weighted GraphSAGE-Based Context-Aware Approach for Big Data Access Control" @default.
- W4385462804 cites W1501856433 @default.
- W4385462804 cites W1523767002 @default.
- W4385462804 cites W1542283487 @default.
- W4385462804 cites W1982682305 @default.
- W4385462804 cites W1987971958 @default.
- W4385462804 cites W2051224630 @default.
- W4385462804 cites W2056718878 @default.
- W4385462804 cites W2060017308 @default.
- W4385462804 cites W2076004681 @default.
- W4385462804 cites W2083566269 @default.
- W4385462804 cites W2085487226 @default.
- W4385462804 cites W2116341502 @default.
- W4385462804 cites W2121746381 @default.
- W4385462804 cites W2129066856 @default.
- W4385462804 cites W2156245716 @default.
- W4385462804 cites W2169846116 @default.
- W4385462804 cites W2207362000 @default.
- W4385462804 cites W2293085841 @default.
- W4385462804 cites W2612872092 @default.
- W4385462804 cites W2749040653 @default.
- W4385462804 cites W2766204291 @default.
- W4385462804 cites W2770587725 @default.
- W4385462804 cites W2805715662 @default.
- W4385462804 cites W2886265487 @default.
- W4385462804 cites W2890124008 @default.
- W4385462804 cites W2962756421 @default.
- W4385462804 cites W2975904211 @default.
- W4385462804 cites W2991276554 @default.
- W4385462804 cites W2997842691 @default.
- W4385462804 cites W3018388517 @default.
- W4385462804 cites W3028881048 @default.
- W4385462804 cites W3081306295 @default.
- W4385462804 cites W3083166789 @default.
- W4385462804 cites W3092619921 @default.
- W4385462804 cites W3100848837 @default.
- W4385462804 cites W3102554291 @default.
- W4385462804 cites W3104307750 @default.
- W4385462804 cites W3114308913 @default.
- W4385462804 cites W3123491145 @default.
- W4385462804 cites W65680166 @default.
- W4385462804 doi "https://doi.org/10.1089/big.2021.0473" @default.
- W4385462804 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37527185" @default.
- W4385462804 hasPublicationYear "2023" @default.
- W4385462804 type Work @default.
- W4385462804 citedByCount "0" @default.
- W4385462804 crossrefType "journal-article" @default.
- W4385462804 hasAuthorship W4385462804A5018956655 @default.
- W4385462804 hasAuthorship W4385462804A5043268521 @default.
- W4385462804 hasAuthorship W4385462804A5046732096 @default.
- W4385462804 hasAuthorship W4385462804A5047645246 @default.
- W4385462804 hasAuthorship W4385462804A5090728786 @default.
- W4385462804 hasConcept C111919701 @default.
- W4385462804 hasConcept C119857082 @default.
- W4385462804 hasConcept C124101348 @default.
- W4385462804 hasConcept C127413603 @default.
- W4385462804 hasConcept C132525143 @default.
- W4385462804 hasConcept C138885662 @default.
- W4385462804 hasConcept C151730666 @default.
- W4385462804 hasConcept C154945302 @default.
- W4385462804 hasConcept C177264268 @default.
- W4385462804 hasConcept C183322885 @default.
- W4385462804 hasConcept C199360897 @default.
- W4385462804 hasConcept C2775924081 @default.
- W4385462804 hasConcept C2778707766 @default.
- W4385462804 hasConcept C2779343474 @default.
- W4385462804 hasConcept C2781238097 @default.
- W4385462804 hasConcept C2781368080 @default.
- W4385462804 hasConcept C38652104 @default.
- W4385462804 hasConcept C41008148 @default.
- W4385462804 hasConcept C41895202 @default.
- W4385462804 hasConcept C527821871 @default.
- W4385462804 hasConcept C62611344 @default.
- W4385462804 hasConcept C66938386 @default.
- W4385462804 hasConcept C75684735 @default.
- W4385462804 hasConcept C80444323 @default.
- W4385462804 hasConcept C86803240 @default.
- W4385462804 hasConcept C98045186 @default.
- W4385462804 hasConceptScore W4385462804C111919701 @default.
- W4385462804 hasConceptScore W4385462804C119857082 @default.
- W4385462804 hasConceptScore W4385462804C124101348 @default.
- W4385462804 hasConceptScore W4385462804C127413603 @default.
- W4385462804 hasConceptScore W4385462804C132525143 @default.
- W4385462804 hasConceptScore W4385462804C138885662 @default.
- W4385462804 hasConceptScore W4385462804C151730666 @default.
- W4385462804 hasConceptScore W4385462804C154945302 @default.
- W4385462804 hasConceptScore W4385462804C177264268 @default.
- W4385462804 hasConceptScore W4385462804C183322885 @default.
- W4385462804 hasConceptScore W4385462804C199360897 @default.
- W4385462804 hasConceptScore W4385462804C2775924081 @default.
- W4385462804 hasConceptScore W4385462804C2778707766 @default.