Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385464458> ?p ?o ?g. }
- W4385464458 endingPage "368" @default.
- W4385464458 startingPage "350" @default.
- W4385464458 abstract "Artificial intelligence (AI) is altering the healthcare industry. By analyzing and interpreting data from clinical trials and research initiatives, it can improve medical research by spotting small but important trends that go beyond the human eye. By analyzing vast volumes of data to assist in making better-educated decisions regarding treatments, AI can also enhance patient care. Speech recognition, visual perception, pattern identification, decision-making, and language processing are all tasks that need human-like intelligence, and AI is the emulation of human intelligence by computers. The application of artificial intelligence in contemporary surgical learning may transform how surgeons are trained. Surgical training has significantly advanced recently as a result of the addition of simulation and task-based training. This technology provides significant potential for this path. This chapter examines the advancements and difficulties in the use of surgical robots and artificial intelligence in MIS." @default.
- W4385464458 created "2023-08-02" @default.
- W4385464458 creator A5067090761 @default.
- W4385464458 creator A5073536310 @default.
- W4385464458 creator A5062497903 @default.
- W4385464458 date "2023-06-30" @default.
- W4385464458 modified "2023-09-23" @default.
- W4385464458 title "Artificial Intelligence and Robotics-Based Minimally Invasive Surgery" @default.
- W4385464458 cites W1985090713 @default.
- W4385464458 cites W2159011496 @default.
- W4385464458 cites W2171192647 @default.
- W4385464458 cites W2572241929 @default.
- W4385464458 cites W2789894922 @default.
- W4385464458 cites W2790020274 @default.
- W4385464458 cites W2790209545 @default.
- W4385464458 cites W2806212567 @default.
- W4385464458 cites W2885558959 @default.
- W4385464458 cites W2966447025 @default.
- W4385464458 cites W2972320421 @default.
- W4385464458 cites W2985355520 @default.
- W4385464458 cites W2995376206 @default.
- W4385464458 cites W3007086729 @default.
- W4385464458 cites W3008960112 @default.
- W4385464458 cites W3011742849 @default.
- W4385464458 cites W3023997891 @default.
- W4385464458 cites W3028484854 @default.
- W4385464458 cites W3038047461 @default.
- W4385464458 cites W3045477517 @default.
- W4385464458 cites W3091987846 @default.
- W4385464458 cites W3094694913 @default.
- W4385464458 cites W3112511064 @default.
- W4385464458 cites W3118017580 @default.
- W4385464458 cites W3119332498 @default.
- W4385464458 cites W3148271110 @default.
- W4385464458 cites W3159219762 @default.
- W4385464458 cites W3211048356 @default.
- W4385464458 cites W3215994836 @default.
- W4385464458 cites W4200134148 @default.
- W4385464458 cites W4207035725 @default.
- W4385464458 cites W4214926853 @default.
- W4385464458 cites W4224322588 @default.
- W4385464458 cites W4225964203 @default.
- W4385464458 cites W4281699887 @default.
- W4385464458 cites W4283260793 @default.
- W4385464458 cites W4293203256 @default.
- W4385464458 cites W4298003015 @default.
- W4385464458 cites W4307263429 @default.
- W4385464458 cites W4307511335 @default.
- W4385464458 cites W4309364691 @default.
- W4385464458 cites W4310862068 @default.
- W4385464458 cites W4311014067 @default.
- W4385464458 cites W4311192218 @default.
- W4385464458 cites W4311704285 @default.
- W4385464458 cites W4316669402 @default.
- W4385464458 doi "https://doi.org/10.4018/978-1-6684-8913-0.ch015" @default.
- W4385464458 hasPublicationYear "2023" @default.
- W4385464458 type Work @default.
- W4385464458 citedByCount "0" @default.
- W4385464458 crossrefType "book-chapter" @default.
- W4385464458 hasAuthorship W4385464458A5062497903 @default.
- W4385464458 hasAuthorship W4385464458A5067090761 @default.
- W4385464458 hasAuthorship W4385464458A5073536310 @default.
- W4385464458 hasConcept C107457646 @default.
- W4385464458 hasConcept C116834253 @default.
- W4385464458 hasConcept C127413603 @default.
- W4385464458 hasConcept C149810388 @default.
- W4385464458 hasConcept C154945302 @default.
- W4385464458 hasConcept C157170001 @default.
- W4385464458 hasConcept C15744967 @default.
- W4385464458 hasConcept C169760540 @default.
- W4385464458 hasConcept C201995342 @default.
- W4385464458 hasConcept C26760741 @default.
- W4385464458 hasConcept C2780451532 @default.
- W4385464458 hasConcept C34413123 @default.
- W4385464458 hasConcept C41008148 @default.
- W4385464458 hasConcept C59822182 @default.
- W4385464458 hasConcept C77805123 @default.
- W4385464458 hasConcept C86803240 @default.
- W4385464458 hasConcept C90509273 @default.
- W4385464458 hasConceptScore W4385464458C107457646 @default.
- W4385464458 hasConceptScore W4385464458C116834253 @default.
- W4385464458 hasConceptScore W4385464458C127413603 @default.
- W4385464458 hasConceptScore W4385464458C149810388 @default.
- W4385464458 hasConceptScore W4385464458C154945302 @default.
- W4385464458 hasConceptScore W4385464458C157170001 @default.
- W4385464458 hasConceptScore W4385464458C15744967 @default.
- W4385464458 hasConceptScore W4385464458C169760540 @default.
- W4385464458 hasConceptScore W4385464458C201995342 @default.
- W4385464458 hasConceptScore W4385464458C26760741 @default.
- W4385464458 hasConceptScore W4385464458C2780451532 @default.
- W4385464458 hasConceptScore W4385464458C34413123 @default.
- W4385464458 hasConceptScore W4385464458C41008148 @default.
- W4385464458 hasConceptScore W4385464458C59822182 @default.
- W4385464458 hasConceptScore W4385464458C77805123 @default.
- W4385464458 hasConceptScore W4385464458C86803240 @default.
- W4385464458 hasConceptScore W4385464458C90509273 @default.
- W4385464458 hasLocation W43854644581 @default.
- W4385464458 hasOpenAccess W4385464458 @default.