Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385480353> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4385480353 abstract "<sec> <title>BACKGROUND</title> Artificial intelligence (AI) is a rapidly developing field with the potential to transform various aspects of healthcare and public health, including medical training. During the 'Hygiene and Public Health' course for fifth-year medical students, a practical training session was conducted on vaccination using AI chatbots as an educational supportive tool. Before receiving specific training on vaccination, the students were given an online test extracted from the Italian National Medical Residency Test (SSM) . After completing the test, a critical correction of each question was performed assisted by AI chatbots. </sec> <sec> <title>OBJECTIVE</title> The main aim was to identify whether AI chatbots can be considered as educational support tools for training in public health. Secondary objective was to assess the performance of different AI chatbots on complex multiple choice medical questions in Italian language. </sec> <sec> <title>METHODS</title> A test composed of 15 multiple-choice questions on vaccination was extracted from the SSM using targeted keywords and administered to medical students via Google Forms and to different AI chatbot models. The correction of the test was conducted in the classroom, focusing on the critical evaluation of the explanations provided by the chatbot. A Mann-Whitney U test was conducted to compare the performances of medical students and AI chatbots. Student feedback was collected anonymously at the end of the training experience. </sec> <sec> <title>RESULTS</title> 36 medical students and 9 AI chatbot models completed the test. The students achieved an average score of 8.22/15 (SD2.65 ), while the AI chatbots scored an average of 12.22/15 (SD 2.77). The results indicated a statistically significant difference in performance between the two groups (U = 49.5, P< .001), with a large effect size (r = 0.69). When divided by question type (Direct, Scenario-Based, Negative), significant differences were observed in 'Direct' (P < .0001) and 'Scenario-Based' (P<.0001) questions, but not in 'Negative' questions. The students reported a high level of satisfaction (7.9/10) with the educational experience, expressing a strong desire to repeat the experience (7.6/10). </sec> <sec> <title>CONCLUSIONS</title> AI chatbots demonstrated their efficacy in answering complex medical questions related to vaccination and providing valuable educational support. Their performance significantly surpassed that of medical students in 'Direct' and 'Scenario-Based' questions. The responsible and critical use of AI chatbots can enhance medical education, making it an essential aspect to integrate into the educational system. </sec>" @default.
- W4385480353 created "2023-08-03" @default.
- W4385480353 creator A5012923871 @default.
- W4385480353 creator A5014622403 @default.
- W4385480353 creator A5034671481 @default.
- W4385480353 creator A5056694078 @default.
- W4385480353 creator A5076058751 @default.
- W4385480353 creator A5085942348 @default.
- W4385480353 date "2023-07-31" @default.
- W4385480353 modified "2023-09-27" @default.
- W4385480353 title "Exploring the possible use of AI Chatbots in Public Health Education: A Feasibility Study (Preprint)" @default.
- W4385480353 cites W2608960955 @default.
- W4385480353 cites W2898737327 @default.
- W4385480353 cites W3046201587 @default.
- W4385480353 cites W3080880935 @default.
- W4385480353 cites W3131347809 @default.
- W4385480353 cites W3162922479 @default.
- W4385480353 cites W4319350602 @default.
- W4385480353 cites W4319662928 @default.
- W4385480353 cites W4322718967 @default.
- W4385480353 cites W4322761615 @default.
- W4385480353 cites W4327946446 @default.
- W4385480353 cites W4366420437 @default.
- W4385480353 cites W4366989525 @default.
- W4385480353 cites W4376866715 @default.
- W4385480353 cites W4378232676 @default.
- W4385480353 cites W4379010216 @default.
- W4385480353 cites W4381953225 @default.
- W4385480353 cites W4385307867 @default.
- W4385480353 cites W4385381951 @default.
- W4385480353 doi "https://doi.org/10.2196/preprints.51421" @default.
- W4385480353 hasPublicationYear "2023" @default.
- W4385480353 type Work @default.
- W4385480353 citedByCount "0" @default.
- W4385480353 crossrefType "posted-content" @default.
- W4385480353 hasAuthorship W4385480353A5012923871 @default.
- W4385480353 hasAuthorship W4385480353A5014622403 @default.
- W4385480353 hasAuthorship W4385480353A5034671481 @default.
- W4385480353 hasAuthorship W4385480353A5056694078 @default.
- W4385480353 hasAuthorship W4385480353A5076058751 @default.
- W4385480353 hasAuthorship W4385480353A5085942348 @default.
- W4385480353 hasConcept C136764020 @default.
- W4385480353 hasConcept C138816342 @default.
- W4385480353 hasConcept C151730666 @default.
- W4385480353 hasConcept C154945302 @default.
- W4385480353 hasConcept C15744967 @default.
- W4385480353 hasConcept C159110408 @default.
- W4385480353 hasConcept C2777267654 @default.
- W4385480353 hasConcept C2779041454 @default.
- W4385480353 hasConcept C2779182362 @default.
- W4385480353 hasConcept C41008148 @default.
- W4385480353 hasConcept C509550671 @default.
- W4385480353 hasConcept C71924100 @default.
- W4385480353 hasConcept C86803240 @default.
- W4385480353 hasConceptScore W4385480353C136764020 @default.
- W4385480353 hasConceptScore W4385480353C138816342 @default.
- W4385480353 hasConceptScore W4385480353C151730666 @default.
- W4385480353 hasConceptScore W4385480353C154945302 @default.
- W4385480353 hasConceptScore W4385480353C15744967 @default.
- W4385480353 hasConceptScore W4385480353C159110408 @default.
- W4385480353 hasConceptScore W4385480353C2777267654 @default.
- W4385480353 hasConceptScore W4385480353C2779041454 @default.
- W4385480353 hasConceptScore W4385480353C2779182362 @default.
- W4385480353 hasConceptScore W4385480353C41008148 @default.
- W4385480353 hasConceptScore W4385480353C509550671 @default.
- W4385480353 hasConceptScore W4385480353C71924100 @default.
- W4385480353 hasConceptScore W4385480353C86803240 @default.
- W4385480353 hasLocation W43854803531 @default.
- W4385480353 hasOpenAccess W4385480353 @default.
- W4385480353 hasPrimaryLocation W43854803531 @default.
- W4385480353 hasRelatedWork W2348742136 @default.
- W4385480353 hasRelatedWork W256019322 @default.
- W4385480353 hasRelatedWork W2748952813 @default.
- W4385480353 hasRelatedWork W2899084033 @default.
- W4385480353 hasRelatedWork W2978601735 @default.
- W4385480353 hasRelatedWork W3038103859 @default.
- W4385480353 hasRelatedWork W3087157779 @default.
- W4385480353 hasRelatedWork W4231927834 @default.
- W4385480353 hasRelatedWork W4306770904 @default.
- W4385480353 hasRelatedWork W4323925118 @default.
- W4385480353 isParatext "false" @default.
- W4385480353 isRetracted "false" @default.
- W4385480353 workType "article" @default.