Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385482721> ?p ?o ?g. }
- W4385482721 abstract "Drug-target interaction (DTI) is an important task in drug discovery and drug repurposing. Currently, most methods utilizing drug-based and protein-based similarity values to predict DTIs achieve promising results. However, calculating similarities for each pair of nodes is time-consuming, especially for relatively large datasets. In this research, we propose a novel subgraph-oriented heterogeneous DTI identification method that transforms the DTI task from a link prediction task to a subgraph classification task. For each link, a local subgraph around this link is extracted. Then, a subgraph labeling process distinguishes different topologies of subgraphs. A random walk-based node representation generation is also integrated with the model. Finally, we apply a graph neural network for the subgraph classification. Our method avoids incorporating human-made similarity values by extracting more meaningful local subgraph topological information. Experimental studies for known DTI predictions on two DTI datasets show promising results for DTI prediction. Empirical results for new DTI predictions on two external public databases show the generalization ability of the proposed method." @default.
- W4385482721 created "2023-08-03" @default.
- W4385482721 creator A5006818887 @default.
- W4385482721 creator A5013204826 @default.
- W4385482721 creator A5014239528 @default.
- W4385482721 creator A5055420596 @default.
- W4385482721 creator A5086491608 @default.
- W4385482721 creator A5087193008 @default.
- W4385482721 date "2023-06-18" @default.
- W4385482721 modified "2023-09-23" @default.
- W4385482721 title "Subgraph-Oriented Heterogeneous Drug-Target Interaction Identification" @default.
- W4385482721 cites W1971825415 @default.
- W4385482721 cites W1976526581 @default.
- W4385482721 cites W1984014392 @default.
- W4385482721 cites W2003483025 @default.
- W4385482721 cites W2026417691 @default.
- W4385482721 cites W2066201825 @default.
- W4385482721 cites W2087698552 @default.
- W4385482721 cites W2096541451 @default.
- W4385482721 cites W2096864392 @default.
- W4385482721 cites W2097289205 @default.
- W4385482721 cites W2135007932 @default.
- W4385482721 cites W2139736926 @default.
- W4385482721 cites W2153838454 @default.
- W4385482721 cites W2161607603 @default.
- W4385482721 cites W2167212630 @default.
- W4385482721 cites W2227583040 @default.
- W4385482721 cites W2256553158 @default.
- W4385482721 cites W2576544908 @default.
- W4385482721 cites W2615217854 @default.
- W4385482721 cites W2742503211 @default.
- W4385482721 cites W2743104969 @default.
- W4385482721 cites W2753953057 @default.
- W4385482721 cites W2767891136 @default.
- W4385482721 cites W2770261575 @default.
- W4385482721 cites W2788919350 @default.
- W4385482721 cites W2945027804 @default.
- W4385482721 cites W2952522777 @default.
- W4385482721 cites W2962756421 @default.
- W4385482721 cites W2962975498 @default.
- W4385482721 cites W2966787092 @default.
- W4385482721 cites W3000043291 @default.
- W4385482721 cites W3003038853 @default.
- W4385482721 cites W3033050543 @default.
- W4385482721 cites W3039465695 @default.
- W4385482721 doi "https://doi.org/10.1109/ijcnn54540.2023.10191473" @default.
- W4385482721 hasPublicationYear "2023" @default.
- W4385482721 type Work @default.
- W4385482721 citedByCount "0" @default.
- W4385482721 crossrefType "proceedings-article" @default.
- W4385482721 hasAuthorship W4385482721A5006818887 @default.
- W4385482721 hasAuthorship W4385482721A5013204826 @default.
- W4385482721 hasAuthorship W4385482721A5014239528 @default.
- W4385482721 hasAuthorship W4385482721A5055420596 @default.
- W4385482721 hasAuthorship W4385482721A5086491608 @default.
- W4385482721 hasAuthorship W4385482721A5087193008 @default.
- W4385482721 hasConcept C103278499 @default.
- W4385482721 hasConcept C103637391 @default.
- W4385482721 hasConcept C111919701 @default.
- W4385482721 hasConcept C115961682 @default.
- W4385482721 hasConcept C116834253 @default.
- W4385482721 hasConcept C118552586 @default.
- W4385482721 hasConcept C119857082 @default.
- W4385482721 hasConcept C124101348 @default.
- W4385482721 hasConcept C127413603 @default.
- W4385482721 hasConcept C131992880 @default.
- W4385482721 hasConcept C132525143 @default.
- W4385482721 hasConcept C134306372 @default.
- W4385482721 hasConcept C153180895 @default.
- W4385482721 hasConcept C154945302 @default.
- W4385482721 hasConcept C15744967 @default.
- W4385482721 hasConcept C162324750 @default.
- W4385482721 hasConcept C177148314 @default.
- W4385482721 hasConcept C17744445 @default.
- W4385482721 hasConcept C187736073 @default.
- W4385482721 hasConcept C199539241 @default.
- W4385482721 hasConcept C199845137 @default.
- W4385482721 hasConcept C2776359362 @default.
- W4385482721 hasConcept C2780035454 @default.
- W4385482721 hasConcept C2780451532 @default.
- W4385482721 hasConcept C33923547 @default.
- W4385482721 hasConcept C41008148 @default.
- W4385482721 hasConcept C59822182 @default.
- W4385482721 hasConcept C62611344 @default.
- W4385482721 hasConcept C66938386 @default.
- W4385482721 hasConcept C80444323 @default.
- W4385482721 hasConcept C86803240 @default.
- W4385482721 hasConcept C94625758 @default.
- W4385482721 hasConceptScore W4385482721C103278499 @default.
- W4385482721 hasConceptScore W4385482721C103637391 @default.
- W4385482721 hasConceptScore W4385482721C111919701 @default.
- W4385482721 hasConceptScore W4385482721C115961682 @default.
- W4385482721 hasConceptScore W4385482721C116834253 @default.
- W4385482721 hasConceptScore W4385482721C118552586 @default.
- W4385482721 hasConceptScore W4385482721C119857082 @default.
- W4385482721 hasConceptScore W4385482721C124101348 @default.
- W4385482721 hasConceptScore W4385482721C127413603 @default.
- W4385482721 hasConceptScore W4385482721C131992880 @default.
- W4385482721 hasConceptScore W4385482721C132525143 @default.
- W4385482721 hasConceptScore W4385482721C134306372 @default.