Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385482783> ?p ?o ?g. }
- W4385482783 abstract "Genomics sequencing has become more accessible thanks to advances in genomics technology. We have witnessed this, particularly in the COVID-19 pandemic with massive growth in viral (SARS-CoV-2) protein sequence data generation. Massive data, however, has been underutilized as a result of certain pandemic policies and countermeasures. For political or economic reasons, some wary countries have purposely created this issue, rather than being subject to the natural barriers to the availability of these data. All countries cannot be expected to actively contribute fair data to the scientific community; otherwise, their participation may become passive. We require a strategy to encourage nations across the globe to fairly exchange information on the pandemic situation and data. We propose a federated learning (FL)-based model to address the issue of data privacy and enable real-time surveillance of epidemics. In FL, we train a feed-forward neural network locally and transmit the updated weights to the central server to combine the learning from local data. In this way, a federated learning-based architecture offers data security because there is no need to share the data (the data does not leave the premises; just parameters or weights are communicated) and encourages all countries to contribute fairly to the research. While FL is popular in dealing with image data, in this paper we apply it to bioinformatics, in particular, protein sequence classification. The results show that the FL-based model not only performs better than the centralized, traditional deep learning models (such as CNN, GRU, LSTM, and feed-forward neural network) in terms of predictive accuracy and fairness in data utilization but that all of this can be accomplished while maintaining data privacy. Our findings imply that FL can address the problems of data availability and privacy without compromising results. Employing factual data and tracking the evolution and dissemination of new SARS-CoV-2 lineages in real-time, can aid in the disclosure of verifiable advancements in pandemic studies." @default.
- W4385482783 created "2023-08-03" @default.
- W4385482783 creator A5017366862 @default.
- W4385482783 creator A5026228482 @default.
- W4385482783 creator A5032474804 @default.
- W4385482783 creator A5064858842 @default.
- W4385482783 date "2023-06-18" @default.
- W4385482783 modified "2023-10-11" @default.
- W4385482783 title "Empowering Pandemic Response with Federated Learning for Protein Sequence Data Analysis" @default.
- W4385482783 cites W1967994196 @default.
- W4385482783 cites W2064675550 @default.
- W4385482783 cites W2103914106 @default.
- W4385482783 cites W2526910689 @default.
- W4385482783 cites W2558202273 @default.
- W4385482783 cites W2574133781 @default.
- W4385482783 cites W2885448090 @default.
- W4385482783 cites W2891959849 @default.
- W4385482783 cites W2903890850 @default.
- W4385482783 cites W2953532875 @default.
- W4385482783 cites W2957180077 @default.
- W4385482783 cites W2964199361 @default.
- W4385482783 cites W3008401431 @default.
- W4385482783 cites W3046480094 @default.
- W4385482783 cites W3080851783 @default.
- W4385482783 cites W3086809868 @default.
- W4385482783 cites W3087224093 @default.
- W4385482783 cites W3099912322 @default.
- W4385482783 cites W3120015169 @default.
- W4385482783 cites W3122794187 @default.
- W4385482783 cites W3127299377 @default.
- W4385482783 cites W3133519489 @default.
- W4385482783 cites W3138795569 @default.
- W4385482783 cites W3158590963 @default.
- W4385482783 cites W3170020805 @default.
- W4385482783 cites W3186051974 @default.
- W4385482783 cites W3201458446 @default.
- W4385482783 cites W3207849004 @default.
- W4385482783 cites W3216778212 @default.
- W4385482783 cites W4214894446 @default.
- W4385482783 cites W4221086457 @default.
- W4385482783 cites W4281631942 @default.
- W4385482783 cites W4294106961 @default.
- W4385482783 cites W4318955533 @default.
- W4385482783 cites W4324128859 @default.
- W4385482783 cites W4380995480 @default.
- W4385482783 cites W4382918145 @default.
- W4385482783 doi "https://doi.org/10.1109/ijcnn54540.2023.10191721" @default.
- W4385482783 hasPublicationYear "2023" @default.
- W4385482783 type Work @default.
- W4385482783 citedByCount "1" @default.
- W4385482783 crossrefType "proceedings-article" @default.
- W4385482783 hasAuthorship W4385482783A5017366862 @default.
- W4385482783 hasAuthorship W4385482783A5026228482 @default.
- W4385482783 hasAuthorship W4385482783A5032474804 @default.
- W4385482783 hasAuthorship W4385482783A5064858842 @default.
- W4385482783 hasConcept C108583219 @default.
- W4385482783 hasConcept C118487528 @default.
- W4385482783 hasConcept C124101348 @default.
- W4385482783 hasConcept C142724271 @default.
- W4385482783 hasConcept C154945302 @default.
- W4385482783 hasConcept C2522767166 @default.
- W4385482783 hasConcept C2775899829 @default.
- W4385482783 hasConcept C2779134260 @default.
- W4385482783 hasConcept C3008058167 @default.
- W4385482783 hasConcept C41008148 @default.
- W4385482783 hasConcept C524204448 @default.
- W4385482783 hasConcept C67186912 @default.
- W4385482783 hasConcept C71924100 @default.
- W4385482783 hasConcept C75684735 @default.
- W4385482783 hasConcept C77088390 @default.
- W4385482783 hasConcept C89623803 @default.
- W4385482783 hasConceptScore W4385482783C108583219 @default.
- W4385482783 hasConceptScore W4385482783C118487528 @default.
- W4385482783 hasConceptScore W4385482783C124101348 @default.
- W4385482783 hasConceptScore W4385482783C142724271 @default.
- W4385482783 hasConceptScore W4385482783C154945302 @default.
- W4385482783 hasConceptScore W4385482783C2522767166 @default.
- W4385482783 hasConceptScore W4385482783C2775899829 @default.
- W4385482783 hasConceptScore W4385482783C2779134260 @default.
- W4385482783 hasConceptScore W4385482783C3008058167 @default.
- W4385482783 hasConceptScore W4385482783C41008148 @default.
- W4385482783 hasConceptScore W4385482783C524204448 @default.
- W4385482783 hasConceptScore W4385482783C67186912 @default.
- W4385482783 hasConceptScore W4385482783C71924100 @default.
- W4385482783 hasConceptScore W4385482783C75684735 @default.
- W4385482783 hasConceptScore W4385482783C77088390 @default.
- W4385482783 hasConceptScore W4385482783C89623803 @default.
- W4385482783 hasLocation W43854827831 @default.
- W4385482783 hasOpenAccess W4385482783 @default.
- W4385482783 hasPrimaryLocation W43854827831 @default.
- W4385482783 hasRelatedWork W2520046485 @default.
- W4385482783 hasRelatedWork W2793151347 @default.
- W4385482783 hasRelatedWork W2860630235 @default.
- W4385482783 hasRelatedWork W3013509985 @default.
- W4385482783 hasRelatedWork W3014300295 @default.
- W4385482783 hasRelatedWork W3048002286 @default.
- W4385482783 hasRelatedWork W3198084416 @default.
- W4385482783 hasRelatedWork W3209328123 @default.
- W4385482783 hasRelatedWork W4213286019 @default.
- W4385482783 hasRelatedWork W4320068940 @default.