Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385484363> ?p ?o ?g. }
- W4385484363 abstract "The technology of tunnel boring machine (TBM) has been widely applied for underground construction worldwide; however, how to ensure the TBM tunneling process safe and efficient remains a major concern. Advance rate is a key parameter of TBM operation and reflects the TBM-ground interaction, for which a reliable prediction helps optimize the TBM performance. Here, we develop a hybrid neural network model, called Attention-ResNet-LSTM, for accurate prediction of the TBM advance rate. A database including geological properties and TBM operational parameters from the Yangtze River Natural Gas Pipeline Project is used to train and test this deep learning model. The evolutionary polynomial regression method is adopted to aid the selection of input parameters. The results of numerical experiments show that our Attention-ResNet-LSTM model outperforms other commonly-used intelligent models with a lower root mean square error and a lower mean absolute percentage error. Further, parametric analyses are conducted to explore the effects of the sequence length of historical data and the model architecture on the prediction accuracy. A correlation analysis between the input and output parameters is also implemented to provide guidance for adjusting relevant TBM operational parameters. The performance of our hybrid intelligent model is demonstrated in a case study of TBM tunneling through a complex ground with variable strata. Finally, data collected from the Baimang River Tunnel Project in Shenzhen of China are used to further test the generalization of our model. The results indicate that, compared to the conventional ResNet-LSTM model, our model has a better predictive capability for scenarios with unknown datasets due to its self-adaptive characteristic." @default.
- W4385484363 created "2023-08-03" @default.
- W4385484363 creator A5005149807 @default.
- W4385484363 creator A5052348093 @default.
- W4385484363 creator A5078337645 @default.
- W4385484363 creator A5085238022 @default.
- W4385484363 creator A5091157798 @default.
- W4385484363 date "2023-08-01" @default.
- W4385484363 modified "2023-09-27" @default.
- W4385484363 title "A performance-based hybrid deep learning model for predicting TBM advance rate using attention-ResNet-LSTM" @default.
- W4385484363 cites W1986013576 @default.
- W4385484363 cites W2012218190 @default.
- W4385484363 cites W2013377700 @default.
- W4385484363 cites W2024921522 @default.
- W4385484363 cites W2056527171 @default.
- W4385484363 cites W2056581810 @default.
- W4385484363 cites W2064675550 @default.
- W4385484363 cites W2105115422 @default.
- W4385484363 cites W2110529327 @default.
- W4385484363 cites W2121935962 @default.
- W4385484363 cites W2253569639 @default.
- W4385484363 cites W2290784212 @default.
- W4385484363 cites W2416069211 @default.
- W4385484363 cites W2550275709 @default.
- W4385484363 cites W2551490508 @default.
- W4385484363 cites W2566958870 @default.
- W4385484363 cites W2579918333 @default.
- W4385484363 cites W2648578256 @default.
- W4385484363 cites W2801439730 @default.
- W4385484363 cites W2884357024 @default.
- W4385484363 cites W2901499576 @default.
- W4385484363 cites W2902508499 @default.
- W4385484363 cites W2906033034 @default.
- W4385484363 cites W2911152796 @default.
- W4385484363 cites W2913939882 @default.
- W4385484363 cites W2914767245 @default.
- W4385484363 cites W2942549247 @default.
- W4385484363 cites W2946640301 @default.
- W4385484363 cites W2948236247 @default.
- W4385484363 cites W2962878352 @default.
- W4385484363 cites W2963928450 @default.
- W4385484363 cites W2993501443 @default.
- W4385484363 cites W2995771889 @default.
- W4385484363 cites W3006637824 @default.
- W4385484363 cites W3009921884 @default.
- W4385484363 cites W3014191625 @default.
- W4385484363 cites W3041981321 @default.
- W4385484363 cites W3042095075 @default.
- W4385484363 cites W3091611050 @default.
- W4385484363 cites W3101546351 @default.
- W4385484363 cites W3107872984 @default.
- W4385484363 cites W3124539583 @default.
- W4385484363 cites W3134518741 @default.
- W4385484363 cites W3135162947 @default.
- W4385484363 cites W3146366485 @default.
- W4385484363 cites W3160955650 @default.
- W4385484363 cites W3174871970 @default.
- W4385484363 cites W3183867975 @default.
- W4385484363 cites W3194009703 @default.
- W4385484363 cites W3200309382 @default.
- W4385484363 cites W3215156797 @default.
- W4385484363 cites W4206568632 @default.
- W4385484363 cites W4206939781 @default.
- W4385484363 cites W4210391607 @default.
- W4385484363 cites W4214931975 @default.
- W4385484363 cites W4221134809 @default.
- W4385484363 cites W4224250179 @default.
- W4385484363 cites W4243417134 @default.
- W4385484363 cites W4281742428 @default.
- W4385484363 cites W4288459182 @default.
- W4385484363 cites W4294878358 @default.
- W4385484363 cites W4306158293 @default.
- W4385484363 cites W4312222186 @default.
- W4385484363 cites W4313256676 @default.
- W4385484363 cites W4313531415 @default.
- W4385484363 cites W4364360832 @default.
- W4385484363 doi "https://doi.org/10.1016/j.jrmge.2023.06.010" @default.
- W4385484363 hasPublicationYear "2023" @default.
- W4385484363 type Work @default.
- W4385484363 citedByCount "0" @default.
- W4385484363 crossrefType "journal-article" @default.
- W4385484363 hasAuthorship W4385484363A5005149807 @default.
- W4385484363 hasAuthorship W4385484363A5052348093 @default.
- W4385484363 hasAuthorship W4385484363A5078337645 @default.
- W4385484363 hasAuthorship W4385484363A5085238022 @default.
- W4385484363 hasAuthorship W4385484363A5091157798 @default.
- W4385484363 hasBestOaLocation W43854843631 @default.
- W4385484363 hasConcept C105795698 @default.
- W4385484363 hasConcept C111919701 @default.
- W4385484363 hasConcept C117251300 @default.
- W4385484363 hasConcept C119857082 @default.
- W4385484363 hasConcept C124101348 @default.
- W4385484363 hasConcept C134306372 @default.
- W4385484363 hasConcept C139945424 @default.
- W4385484363 hasConcept C154945302 @default.
- W4385484363 hasConcept C177148314 @default.
- W4385484363 hasConcept C2777115002 @default.
- W4385484363 hasConcept C33923547 @default.
- W4385484363 hasConcept C41008148 @default.
- W4385484363 hasConcept C44154836 @default.