Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385484925> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4385484925 abstract "Weighted constraint satisfaction problems (WCSPs) are one of the most important constraint programming models aiming to find a cost-minimal solution. Tree-based Large Neighborhood Search (T-LNS) is an important local search based incomplete algorithm to solve a WCSP. Currently, when solving unseen problem instances, the parameter of T-LNS (i.e., destroy rate t) is obtained by either trying different values or adapting the value that has been shown to be well-performed in a known problem set. However, the best value of the destroy rate <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$t$</tex> that yields the best performance for T-LNS varies over different problem instances. As a result, tuning the parameter in such a hand-crafted way could either be tedious or hinder the performance of T-LNS. Therefore, to further stabilize and optimize the performance of T-LNS when solving WCSP instances, we propose to build a pretrained algorithm configurator that can recommend a suitable value of <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$t$</tex> for T-LNS based on the problem instance it will solve, via supervised learning. In more detail, in order to achieve instance-specific parameter prediction, we propose to encode the information such as the size and structure of a WCSP instance into a feature vector, and then leverage the fledged machine learning models to build our first pretrained algorithm configurator. Then, in order to encode a WCSP instance more comprehensively, we propose to use directed tripartite graph to represent a WCSP instance, which can represent the high- dimensional cost values in constrain functions. Then, we use Graph Attention Networks (GATs) to learn the embedding of tripartite graph and then build our second pretrained algorithm configurator. Finally, the experimental results show that our proposed algorithm configurators can effectively recommend suitable parameters for T-LNS in a series problem instances, yielding better performance over other competitors on different benchmark problems." @default.
- W4385484925 created "2023-08-03" @default.
- W4385484925 creator A5034614651 @default.
- W4385484925 creator A5069310054 @default.
- W4385484925 creator A5075596275 @default.
- W4385484925 date "2023-06-18" @default.
- W4385484925 modified "2023-09-26" @default.
- W4385484925 title "Pretrained Parameter Configurator for Large Neighborhood Search to Solve Weighted Constraint Satisfaction Problems" @default.
- W4385484925 cites W1571472016 @default.
- W4385484925 cites W1755177257 @default.
- W4385484925 cites W1982333717 @default.
- W4385484925 cites W1989580616 @default.
- W4385484925 cites W2031585418 @default.
- W4385484925 cites W2037387582 @default.
- W4385484925 cites W2078151974 @default.
- W4385484925 cites W2086886584 @default.
- W4385484925 cites W2112937598 @default.
- W4385484925 cites W2735020746 @default.
- W4385484925 cites W2911964244 @default.
- W4385484925 cites W2922438793 @default.
- W4385484925 cites W2950680102 @default.
- W4385484925 cites W2951837466 @default.
- W4385484925 cites W2992865406 @default.
- W4385484925 cites W3088578860 @default.
- W4385484925 cites W4200631851 @default.
- W4385484925 cites W4251464645 @default.
- W4385484925 cites W4304128363 @default.
- W4385484925 cites W566632165 @default.
- W4385484925 cites W60686164 @default.
- W4385484925 doi "https://doi.org/10.1109/ijcnn54540.2023.10191732" @default.
- W4385484925 hasPublicationYear "2023" @default.
- W4385484925 type Work @default.
- W4385484925 citedByCount "0" @default.
- W4385484925 crossrefType "proceedings-article" @default.
- W4385484925 hasAuthorship W4385484925A5034614651 @default.
- W4385484925 hasAuthorship W4385484925A5069310054 @default.
- W4385484925 hasAuthorship W4385484925A5075596275 @default.
- W4385484925 hasConcept C113174947 @default.
- W4385484925 hasConcept C114614502 @default.
- W4385484925 hasConcept C119857082 @default.
- W4385484925 hasConcept C126255220 @default.
- W4385484925 hasConcept C137631369 @default.
- W4385484925 hasConcept C138885662 @default.
- W4385484925 hasConcept C144133560 @default.
- W4385484925 hasConcept C153083717 @default.
- W4385484925 hasConcept C154945302 @default.
- W4385484925 hasConcept C162853370 @default.
- W4385484925 hasConcept C173404611 @default.
- W4385484925 hasConcept C177264268 @default.
- W4385484925 hasConcept C199360897 @default.
- W4385484925 hasConcept C199622910 @default.
- W4385484925 hasConcept C2524010 @default.
- W4385484925 hasConcept C2776036281 @default.
- W4385484925 hasConcept C2776401178 @default.
- W4385484925 hasConcept C2777210712 @default.
- W4385484925 hasConcept C33923547 @default.
- W4385484925 hasConcept C41008148 @default.
- W4385484925 hasConcept C41895202 @default.
- W4385484925 hasConcept C49937458 @default.
- W4385484925 hasConcept C80444323 @default.
- W4385484925 hasConceptScore W4385484925C113174947 @default.
- W4385484925 hasConceptScore W4385484925C114614502 @default.
- W4385484925 hasConceptScore W4385484925C119857082 @default.
- W4385484925 hasConceptScore W4385484925C126255220 @default.
- W4385484925 hasConceptScore W4385484925C137631369 @default.
- W4385484925 hasConceptScore W4385484925C138885662 @default.
- W4385484925 hasConceptScore W4385484925C144133560 @default.
- W4385484925 hasConceptScore W4385484925C153083717 @default.
- W4385484925 hasConceptScore W4385484925C154945302 @default.
- W4385484925 hasConceptScore W4385484925C162853370 @default.
- W4385484925 hasConceptScore W4385484925C173404611 @default.
- W4385484925 hasConceptScore W4385484925C177264268 @default.
- W4385484925 hasConceptScore W4385484925C199360897 @default.
- W4385484925 hasConceptScore W4385484925C199622910 @default.
- W4385484925 hasConceptScore W4385484925C2524010 @default.
- W4385484925 hasConceptScore W4385484925C2776036281 @default.
- W4385484925 hasConceptScore W4385484925C2776401178 @default.
- W4385484925 hasConceptScore W4385484925C2777210712 @default.
- W4385484925 hasConceptScore W4385484925C33923547 @default.
- W4385484925 hasConceptScore W4385484925C41008148 @default.
- W4385484925 hasConceptScore W4385484925C41895202 @default.
- W4385484925 hasConceptScore W4385484925C49937458 @default.
- W4385484925 hasConceptScore W4385484925C80444323 @default.
- W4385484925 hasLocation W43854849251 @default.
- W4385484925 hasOpenAccess W4385484925 @default.
- W4385484925 hasPrimaryLocation W43854849251 @default.
- W4385484925 hasRelatedWork W115413730 @default.
- W4385484925 hasRelatedWork W128226163 @default.
- W4385484925 hasRelatedWork W1486916474 @default.
- W4385484925 hasRelatedWork W1496754191 @default.
- W4385484925 hasRelatedWork W1771117753 @default.
- W4385484925 hasRelatedWork W2016918730 @default.
- W4385484925 hasRelatedWork W2097415053 @default.
- W4385484925 hasRelatedWork W2338461122 @default.
- W4385484925 hasRelatedWork W2951871866 @default.
- W4385484925 hasRelatedWork W2473127620 @default.
- W4385484925 isParatext "false" @default.
- W4385484925 isRetracted "false" @default.
- W4385484925 workType "article" @default.