Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385487007> ?p ?o ?g. }
- W4385487007 endingPage "100507" @default.
- W4385487007 startingPage "100507" @default.
- W4385487007 abstract "Online anomaly detection is a key challenge for industrial internet of things (IIoT) applications, as anomalies may occur in data streams from sensors and cause losses or damages. However, most existing methods for online anomaly detection have limitations in efficiency, effectiveness and timeliness, especially with the massive and distributed data streams from IIoT devices. Therefore, developing a data stream processing framework to discover anomalies in time and ensure the proper operation of the system is an urgent issue for IIoT. In this paper, we propose a flexible stream processing framework that enables online anomaly detection for IIoT applications. The framework exploits a distributed computing architecture based on docker containers to improve flexibility, migration capability and customisation. The framework also uses a central mediator to coordinate data stream processing tasks running on different docker nodes. Moreover, we develop a prediction-based online anomaly detection model that consists of batch model training and data stream anomaly detection processes. The model uses long short-term memory (LSTM) neural networks to predict data stream values and a dynamic sliding window method to model prediction errors and detect anomalies. We implement a case study to detect abnormal heating temperatures from an industrial heating plant and evaluate the performance of the proposed framework and anomaly detection model. The results show that our framework and model can achieve high accuracy and low latency in detecting anomalies, and they outperform existing methods in terms of scalability, efficiency and adaptability for IIoT applications." @default.
- W4385487007 created "2023-08-03" @default.
- W4385487007 creator A5015017142 @default.
- W4385487007 creator A5032842248 @default.
- W4385487007 creator A5046467104 @default.
- W4385487007 creator A5075023462 @default.
- W4385487007 date "2023-10-01" @default.
- W4385487007 modified "2023-10-17" @default.
- W4385487007 title "Anomaly detection with a container-based stream processing framework for Industrial Internet of Things" @default.
- W4385487007 cites W2000975802 @default.
- W4385487007 cites W2068849277 @default.
- W4385487007 cites W2084512860 @default.
- W4385487007 cites W2110086534 @default.
- W4385487007 cites W2114623221 @default.
- W4385487007 cites W2122646361 @default.
- W4385487007 cites W2158698691 @default.
- W4385487007 cites W2416799949 @default.
- W4385487007 cites W2523738674 @default.
- W4385487007 cites W2726150830 @default.
- W4385487007 cites W2753968620 @default.
- W4385487007 cites W2782812883 @default.
- W4385487007 cites W2806590860 @default.
- W4385487007 cites W2890707978 @default.
- W4385487007 cites W2907421153 @default.
- W4385487007 cites W2913854892 @default.
- W4385487007 cites W2915771847 @default.
- W4385487007 cites W2940895343 @default.
- W4385487007 cites W2962736999 @default.
- W4385487007 cites W2985655471 @default.
- W4385487007 cites W3004999940 @default.
- W4385487007 cites W3010957307 @default.
- W4385487007 cites W3042316863 @default.
- W4385487007 cites W3102476541 @default.
- W4385487007 cites W3105324058 @default.
- W4385487007 cites W3178367256 @default.
- W4385487007 cites W3185247140 @default.
- W4385487007 cites W3197213531 @default.
- W4385487007 cites W3198001643 @default.
- W4385487007 cites W3216833217 @default.
- W4385487007 cites W4200225090 @default.
- W4385487007 cites W4226248369 @default.
- W4385487007 cites W4226435948 @default.
- W4385487007 cites W4285794683 @default.
- W4385487007 cites W4303449845 @default.
- W4385487007 doi "https://doi.org/10.1016/j.jii.2023.100507" @default.
- W4385487007 hasPublicationYear "2023" @default.
- W4385487007 type Work @default.
- W4385487007 citedByCount "0" @default.
- W4385487007 crossrefType "journal-article" @default.
- W4385487007 hasAuthorship W4385487007A5015017142 @default.
- W4385487007 hasAuthorship W4385487007A5032842248 @default.
- W4385487007 hasAuthorship W4385487007A5046467104 @default.
- W4385487007 hasAuthorship W4385487007A5075023462 @default.
- W4385487007 hasBestOaLocation W43854870071 @default.
- W4385487007 hasConcept C105795698 @default.
- W4385487007 hasConcept C107027933 @default.
- W4385487007 hasConcept C120314980 @default.
- W4385487007 hasConcept C124101348 @default.
- W4385487007 hasConcept C149635348 @default.
- W4385487007 hasConcept C152745839 @default.
- W4385487007 hasConcept C154945302 @default.
- W4385487007 hasConcept C172707124 @default.
- W4385487007 hasConcept C202839342 @default.
- W4385487007 hasConcept C2778484313 @default.
- W4385487007 hasConcept C2780598303 @default.
- W4385487007 hasConcept C33923547 @default.
- W4385487007 hasConcept C41008148 @default.
- W4385487007 hasConcept C48044578 @default.
- W4385487007 hasConcept C739882 @default.
- W4385487007 hasConcept C75684735 @default.
- W4385487007 hasConcept C76155785 @default.
- W4385487007 hasConcept C77088390 @default.
- W4385487007 hasConcept C79403827 @default.
- W4385487007 hasConcept C81860439 @default.
- W4385487007 hasConcept C89198739 @default.
- W4385487007 hasConceptScore W4385487007C105795698 @default.
- W4385487007 hasConceptScore W4385487007C107027933 @default.
- W4385487007 hasConceptScore W4385487007C120314980 @default.
- W4385487007 hasConceptScore W4385487007C124101348 @default.
- W4385487007 hasConceptScore W4385487007C149635348 @default.
- W4385487007 hasConceptScore W4385487007C152745839 @default.
- W4385487007 hasConceptScore W4385487007C154945302 @default.
- W4385487007 hasConceptScore W4385487007C172707124 @default.
- W4385487007 hasConceptScore W4385487007C202839342 @default.
- W4385487007 hasConceptScore W4385487007C2778484313 @default.
- W4385487007 hasConceptScore W4385487007C2780598303 @default.
- W4385487007 hasConceptScore W4385487007C33923547 @default.
- W4385487007 hasConceptScore W4385487007C41008148 @default.
- W4385487007 hasConceptScore W4385487007C48044578 @default.
- W4385487007 hasConceptScore W4385487007C739882 @default.
- W4385487007 hasConceptScore W4385487007C75684735 @default.
- W4385487007 hasConceptScore W4385487007C76155785 @default.
- W4385487007 hasConceptScore W4385487007C77088390 @default.
- W4385487007 hasConceptScore W4385487007C79403827 @default.
- W4385487007 hasConceptScore W4385487007C81860439 @default.
- W4385487007 hasConceptScore W4385487007C89198739 @default.
- W4385487007 hasFunder F4320321001 @default.
- W4385487007 hasFunder F4320324778 @default.