Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385488911> ?p ?o ?g. }
- W4385488911 abstract "Recently, quantum machine learning has been ap-plied to stochastic-based modelling, promising that the inherent uncertainty in quantum computing will be a significant advan-tage, driving neuromorphic computing research to new heights. Spiking Neural Networks (SNNs) and their neuromorphic are gaining popularity due to their inherent ability to process spatial and temporal data. However, learning the interconnection weights is daunting due to the inherent stochastic characteristics of neuron signals and the inherent non-differentiable spike events in classical SNN. This paper introduces a supervised Deep Spiking Quantum Neural Network (DSQ-Net) using a hybrid quantum- classical architecture having the merits of amplitude encoding in a dressed quantum layer. A novel attempt has been made to obviate the challenges in training a classical deep SNN, assisted by a Variational Quantum Circuit (VQC) in the proposed hy-brid quantum-classical framework. The DSQ-Net has undergone thorough validation and benchmarking procedures using the PennyLane Quantum Simulator and the limited volume real IBM Quantum hardware. The experiments have been conducted on images from the MNIST, FashionMNIST, KMNIST, and CIFAR-I0 datasets. Classification accuracy has been reported in the high nineties for unseen noisy test images using the proposed DSQ-Net model on the quantum simulator. It outper-forms its classical counterpart (Deep Spiking Neural Networks), shallow Random Quantum Neural Networks (RQNN), Quantum Superposition-inspired Spiking Neural Networks (SQIN), ResNet- 18, and AlexNet. The PyTorch implementation of DSQ-Net is made available on Github <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sup> <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sup> https://anonymous.4open.science/r/DSQ-Net-037E," @default.
- W4385488911 created "2023-08-03" @default.
- W4385488911 creator A5002217617 @default.
- W4385488911 creator A5003350752 @default.
- W4385488911 creator A5018715621 @default.
- W4385488911 creator A5043256783 @default.
- W4385488911 creator A5047174801 @default.
- W4385488911 creator A5064822688 @default.
- W4385488911 date "2023-06-18" @default.
- W4385488911 modified "2023-09-26" @default.
- W4385488911 title "Deep Spiking Quantum Neural Network for Noisy Image Classification" @default.
- W4385488911 cites W1570411240 @default.
- W4385488911 cites W1987869189 @default.
- W4385488911 cites W1990221069 @default.
- W4385488911 cites W2004159082 @default.
- W4385488911 cites W2007815184 @default.
- W4385488911 cites W2103179919 @default.
- W4385488911 cites W2112796928 @default.
- W4385488911 cites W2147800946 @default.
- W4385488911 cites W2165396124 @default.
- W4385488911 cites W2170807564 @default.
- W4385488911 cites W2536717558 @default.
- W4385488911 cites W2559394418 @default.
- W4385488911 cites W2578080479 @default.
- W4385488911 cites W2786167326 @default.
- W4385488911 cites W2790388700 @default.
- W4385488911 cites W2792946961 @default.
- W4385488911 cites W2896712926 @default.
- W4385488911 cites W2898323475 @default.
- W4385488911 cites W2901397387 @default.
- W4385488911 cites W2904302621 @default.
- W4385488911 cites W2944994739 @default.
- W4385488911 cites W2962872506 @default.
- W4385488911 cites W2963094797 @default.
- W4385488911 cites W2963206832 @default.
- W4385488911 cites W2971371016 @default.
- W4385488911 cites W2989257188 @default.
- W4385488911 cites W2990793844 @default.
- W4385488911 cites W2995742898 @default.
- W4385488911 cites W2999157894 @default.
- W4385488911 cites W3004965358 @default.
- W4385488911 cites W3035006120 @default.
- W4385488911 cites W3037607219 @default.
- W4385488911 cites W3097140984 @default.
- W4385488911 cites W3101479050 @default.
- W4385488911 cites W3132743969 @default.
- W4385488911 cites W3156803014 @default.
- W4385488911 cites W3158909818 @default.
- W4385488911 cites W3159998681 @default.
- W4385488911 cites W3160771574 @default.
- W4385488911 cites W3167224217 @default.
- W4385488911 cites W3186301756 @default.
- W4385488911 cites W3189250281 @default.
- W4385488911 cites W3192227636 @default.
- W4385488911 cites W3194645516 @default.
- W4385488911 cites W3200084004 @default.
- W4385488911 cites W3211954089 @default.
- W4385488911 cites W3212040173 @default.
- W4385488911 cites W4210307617 @default.
- W4385488911 cites W4297889476 @default.
- W4385488911 cites W4319965846 @default.
- W4385488911 doi "https://doi.org/10.1109/ijcnn54540.2023.10191509" @default.
- W4385488911 hasPublicationYear "2023" @default.
- W4385488911 type Work @default.
- W4385488911 citedByCount "0" @default.
- W4385488911 crossrefType "proceedings-article" @default.
- W4385488911 hasAuthorship W4385488911A5002217617 @default.
- W4385488911 hasAuthorship W4385488911A5003350752 @default.
- W4385488911 hasAuthorship W4385488911A5018715621 @default.
- W4385488911 hasAuthorship W4385488911A5043256783 @default.
- W4385488911 hasAuthorship W4385488911A5047174801 @default.
- W4385488911 hasAuthorship W4385488911A5064822688 @default.
- W4385488911 hasConcept C108583219 @default.
- W4385488911 hasConcept C11731999 @default.
- W4385488911 hasConcept C121332964 @default.
- W4385488911 hasConcept C151927369 @default.
- W4385488911 hasConcept C154945302 @default.
- W4385488911 hasConcept C190502265 @default.
- W4385488911 hasConcept C192576344 @default.
- W4385488911 hasConcept C2779094486 @default.
- W4385488911 hasConcept C41008148 @default.
- W4385488911 hasConcept C50644808 @default.
- W4385488911 hasConcept C55615164 @default.
- W4385488911 hasConcept C58053490 @default.
- W4385488911 hasConcept C62520636 @default.
- W4385488911 hasConcept C80444323 @default.
- W4385488911 hasConcept C84114770 @default.
- W4385488911 hasConceptScore W4385488911C108583219 @default.
- W4385488911 hasConceptScore W4385488911C11731999 @default.
- W4385488911 hasConceptScore W4385488911C121332964 @default.
- W4385488911 hasConceptScore W4385488911C151927369 @default.
- W4385488911 hasConceptScore W4385488911C154945302 @default.
- W4385488911 hasConceptScore W4385488911C190502265 @default.
- W4385488911 hasConceptScore W4385488911C192576344 @default.
- W4385488911 hasConceptScore W4385488911C2779094486 @default.
- W4385488911 hasConceptScore W4385488911C41008148 @default.
- W4385488911 hasConceptScore W4385488911C50644808 @default.
- W4385488911 hasConceptScore W4385488911C55615164 @default.
- W4385488911 hasConceptScore W4385488911C58053490 @default.
- W4385488911 hasConceptScore W4385488911C62520636 @default.